mas.s62

lecture 13

payment channels \& the
lightning network (pt 1)
2018-03-21
Tadge Dryja

today

payment channels
unidirectional
decreasing time
lightning channels

why payment channels?

 every tx going on blockchain doesn't scale. $0\left(n^{2}\right)$ (kind of)First response of anyone, ever, about bitcoin:

history

Nov 2008
Satoshi: I've been working on a new electronic cash system that's fully peer-to-peer, with no trusted third party.

James A. Donald: We very, very much need such a system, but the way I understand your proposal, it does not seem to scale to the required size.

1-way channel
initial idea: incremental payment channels
transactions have a "lock time" field
Transaction is only valid after the lock time (height) has passed

1-way channel
a "channel" is just a multisig output
2 of 2 signatures required

Alice funds to spend to Bob

Fund Tx	
input	output
Alice's txid:index	Alice \& Bob multisig
Alice's signature coins	

1-way channel

a refund transaction is for Alice to get her money back. Lock time is set to 1 week in the future

Refund Tx LOCKTIME: March 28	
input	output
fund txid	Alice address
Bob's signature (alice's)	10 coins

1-way channel

```
Fund txout A&B 10
```


Alice signs a transaction spending the multisig output, sending 1 coin to Bob and 9 back to Alice. She sends the txc to Bob.

1-way channel

Bob DOESN'T sign his side and broadcast. Instead, he waits.

1-way channel

```
Fund txout A&B 10
```


Alice sends a new transaction, spending the fund output, this time sending 2 coins to Bob. Again Bob waits.

1-way channel

```
Fund txout A&B 10
```


Alice makes a new transaction, this time sending 3 coins to Bob.

1-way channel outcomes

Bob keeps getting half-signed txs with more money going to him
the old txs are useless; he can delete them
he must sign and broadcast one before next week!

1-way channel outcomes

 useful, but limited1 way: Bob can't pay Alice. Alice knows Bob retains the tx paying the most to himself
Time limit due to refund tx
Refund tx needs to be built before fund tx (malleability)

lightning channels

 make a payment channel bidirectional, and indefinite durationbut how? refund tx? how to delete / revoke old txs?

timing opcodes

OP_CHECKSEQUENCEVERIFY
relative locktime opcode
require that the input have at least n confirmations to be able to spend if not, tx fails

timing opcodes

OP_CHECKLOCKTIMEVERIFY
absolute locktime opcode
require that the transaction be confirmed in a block of at least height n
fail otherwise
revoke based on timing
keyA \&\& keyB ||
keyC \&\& 100 blocks
A and B together can spend any time
C can spend together, but must wait
A can grab the coins first!
revokable tx

Commit Tx (held by Alice)	
input	output
fund txid Bob's signature	Alice key \& 100 blocks or AliceR \& Bob key 2 coins
	Bob address 8 coins

revokable tx

Commit Tx (held by Bob)	output input
fund txid Alice's signature 2 coins	
	Bob key \& 100 blocks or Alice \& BobR key 8 coins

reveal to revoke
Either party broadcasts \& has to wait Alice gives Bob the AliceR privKey Bob gives Alice the BobR privKey Now if they broadcast the counterparty can take all funds while they wait!

add and delete states

```
Fund txout A\&B 10
```


In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

add and delete states

```
Fund txout A\&B 10
```


In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

add and delete states

In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

add and delete states

In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

2 party, indefinite

Still need to create channel to pay
1 tx to open, 1 tx to close channel potentially 2 txs to close (rare) (broadcast commit tx, sweep)

multiple party channels

 single channel with $3+$ users gets really complicatedwhat about a forwarding network of point to point channels?

multiple party - optimistic

Alice pays Bob 1 coin, and Bob pays Carol 1 coin

trust issues

Bob keeps the money. Thanks Alice

Preimage determines who spends New output script type: HTLC Hash/Time Locked Contract KeyA \&\& preimageR || KeyB \&\& OP_CLTV

Preimage determines who spends New output script type: HTLC Hash/Time Locked Contract KeyA \&\& preimageR || KeyB \&\& OP_CLTV
revokable tx

Commit Tx (held by Bob)	
input	output
fund txid Alice's signature	Alice address 2 coins
	Bob key \& 100 blocks or Alice \& BobR key 8 coins

Preimage determines who spends

multiple party - adversarial

multiple party - adversarial

$H=\operatorname{hash}(R)$

multiple party - adversarial

H

multiple party - adversarial

HTLC:

H
H, R

multiple party - adversarial

HTLC:
Bob \&\& R ||
Alice \&\& 17:00

H
H, R

multiple party - adversarial

HTLC:
Bob \&\& R ||

Alice \&\& 17:00

H
H, R

multiple party - adversarial

lightning network

lots of nodes with channels connecting, forming a graph request payment routing via HTLC outputs
open few channels, able to pay many users on the network

lightning network

 cross chain swapssecurity: monitoring, outsourcing stuck HTLCs, dust, fees
lots more you can do - will go into detail next time!

MIT OpenCourseWare
https://ocw.mit.edu/

MAS.S62 Cryptocurrency Engineering and Design
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

