
mas.s62 
lecture 12 

txid malleability and 
segregated witness 

2018-03-19 
Tadge Dryja 

1



schedule stuff 
hope people were able to attend the 
expo, it was fun 

office hours tomorrow 

pset03 due wed 21st 

2



today 
tx malleability 

segregated witness 

I'm endoring an ICO -

Anne's intermittent cookie offering 3



malleability 
ability to deform under pressure 

bitcoin is modeled after gold, which 
is the most malleable metal; thus 
bitcoin is a highly malleable system 

4



malleability 
actually, it's when adversaries can 
modify ciphertexts, messages, 
signatures, etc and things still 
'work' 

In the case of bitcoin, transactions 
can be changed and still be valid! 

5



tx asymmetry 
recall the tx format; inputs and 
outputs don't look the same 

txid:index (36B) 
signature (100B) 

script (25B) 
amount (8B) 

txid:index 
signature 

script (pubkey) 
amount 

6



what gets signed 
sign the whole transaction, inputs 
and outputs 

But inputs contain signatures 

and you can't sign the signature 

7



what gets signed 
remove the signature fields, sign, 
then put signatures in 

change any bit of the signed message, 
and the signature is invalid 

8



what gets signed 
remove the signature fields, sign, 
then put signatures in 

change any bit of the signed message, 
and the signature is invalid 

but txid is the hash of the message, 
including signatures 

9



signature malleability 
3rd party malleability 

leading zeros 

"low s" can flip the sign of the 
signature and it's still valid 

10



signature malleability 
1st party 

recall signing uses a nonce k 

use a different k, different 
signature on the same message 

RFC6979 defines deterministic k algo, 
but not detectable by observers 

11



so you've been malleated 
txid changes 

outputs are still the same 

which inputs also still the same 

so no big deal? 

12



so you've been malleated 
in most cases, some wallets have 
trouble 

broadcast tx 2d5cac, which never got 
confirmed 

Instead malleated to 9cba3e 

Wallet shows unconfirmed forever 
13



dependent txs 
spending unconfirmed change output 
from tx1 7feec1. Sign and broadcast 
tx2 

tx1 changes to b2068c! 

tx2 invalid, refers to txid which can 
never be confirmed 

14



dependent txs 
txid change is annoying but can refer 
to malleated txids and re-sign 

what if you can't re-sign? 

15



dependent txs 
txid change is annoying but can refer 
to malleated txids and re-sign 

what if you can't re-sign? 

multisig, pre-signed txs 

very important in payment channels / 
lightning network 

16



different ideas 
use non-malleable signatures? 

lamport signatures were non-malleable 

but many useful signature schemes are 
malleable 

17



different ideas 
don't sign your inputs at all! 

I really like this idea, allows many 
fun features 

but dangerous: allows signature 
replays. Sign once, use many 

18



how to fix malleability? 
find out! 

after intermission 

19



segregated witness 
strange name for straightforward idea 

Don't include signatures in txids; 
txs are now defined by input pointers 
and outputs only 

signature changes but txid doesn't 

But backwards compatibility...? 
20



soft fork 
would have been easier to start out 
this way 

But doable as a soft fork 

but how...? 

make outputs which don't require 
signatures 

21



segwit version numbers 
output script: 

0 <pubkey hash> 

sig script: 

(nothing) 

22



segwit version numbers 
output script: 

0 <pubkey hash> 

sig script: 

(nothing) 

<pubkey hash> on top of stack; 
non-zero, coins move! 23



pubkey hash template 
output script: 

0 <pubkey hash> 

now means pay to pubkey hash 

but put the signature somewhere else 

the "witness" field, old software 
never sees 24



new tx type 
old tx format 

txid:index (36B) 
signature (100B) 

script (25B) 
amount (8B) 

txid:index 
signature 

script (pubkey) 
amount 

25



new tx type 
new tx format 

txid:index (36B) 
signature (0B) 
[witness] 

script (25B) 
amount (8B) 

txid:index 
signature 
[witness] 

script (pubkey) 
amount 

26



omit to old nodes 
when people ask for witness txs, 
include the witness 

when they just ask for txs, give it 
to them without the witness field 

27



omit to old nodes 
old nodes: signature can't change; 
there isn't one! 

new nodes: signature can change, but 
doesn't affect txid 

28



(dis)agreement 
new & old nodes agree on outputs, and 
which inputs get spent 

just don't agree on how they got 
spent 

also don't agree on..? 

29



(dis)agreement 
new & old nodes agree on outputs, and 
which inputs get spent 

just don't agree on how they got 
spent 

also don't agree on..? 
hint: biggest argument, from 2010... 

30



(dis)agreement 
new & old nodes agree on outputs, and 
which inputs get spent 

just don't agree on how they got 
spent 

also don't agree on..? 

transaction size! (in bytes) 
31



size (dis)agreement 
old nodes don't see witness field; 
the 100+ bytes of pubkey / signature 
aren't there 

those bytes don't count towards the 
1M block size limit 

-> block size increase soft fork 
32



witness discount 
to prevent spamming new nodes, 
witness bytes still count: ¼ a 
regular byte 

(in new software, multiply 
non-witness bytes by 4 and count max 
block size as 4M) 

end result: ~80% more txs / block 33



commit signatures 
if signatures aren't in txid, they 
aren't in the merkle root 

agree on utxo set, disagree on 
signature data 

weird! disagreement on who signed 
multisig; bad for accountability 

34



commit signatures 

txid 
0 

txid 
1 

txid 
2 

txid 
3 

hash 
0,1 

hash 
2,3 

hash 
h,hcommit to all 

txids 

35



commit signatures 

txid 
0 

txid 
1 

txid 
3 

hash 
0,1 

hash 
h,h 

wtxid 
2 

wtxid 
3 

hash 
3 

make witness 
hash merkle 
tree; commit to 
witness root in 
coinbase tx 

hash 
2,3 

txid 
2 

wtxid 
1 

hash 
1,2 

wit 
root 

36



upgrade path 
output script: 

0 <pubkey hash> 

now means pay to pubkey hash 

1...16 <data> 

means... no witness needed (yet!) 

37



upgrade path 
16 more versions to upgrade to 

currently don't need anything, but 
new nodes can require new scripts, 
smart contracts, etc 

nicer upgrade with less ugly code 

don't send to 2 <pubkey> today! 
38



segwit 
fixes malleability, increases block 
size, does other stuff 

some people don't like it 

unclear why 

39



MIT OpenCourseWare 
https://ocw.mit.edu/ 

MAS.S62 Cryptocurrency Engineering and Design 
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



