mas.s62 lecture 17 coinjoin, signature aggregation 2018-04-11 Tadge Dryja

privacy coinjoin aggregate signatures schnorr multi-signatures aggregation and attacks

today

privacy

related terms: anonymity, fungibility

whatever the term, I don't need any.

I've got nothing to hide.

privacy

if you don't have anything to hide, you don't have any bitcoin

literally; the instant your private
key is publicly known, someone will
take your bitcoins

fungibility

often used as a euphemism for privacy
/ anonymity

means every bitcoin is "the same"

important for things that strive to
be money

gold is fungible, diamonds are not

fungibility

currency legally considered fungible

Crawfurd v The Royal Bank (1749)

guy writes his name on a £20 note, loses it. The note shows up later at the bank, he demands it back. Court says nope, that's not how money works.

fungibility

bitcoin does not enjoy the same legal
protections; not considered currency
by most govts

so it's up to the software to enforce fungibility of the coins

real world case customer buys coins customer transfers coins to UK betting shop. bets on game & wins customer transfers winnings back to US exchange to sell. exchange closes the account as violation of ToS problem...? 8

real world case

those coins are "worth less" than
other coins, because of where they're
from

very un-money-like!

if we want to make bitcoin money, how
to fix this?

address re-use simplest loss of privacy persistent use of a pubkey web explorers treat addresses as having balances

guessing change outputs tx with 1 in, 2 out

input: 10 coins
output a: 1 coin
output b: 8.9997 coin
guess which goes to the same person

anonymity set

- terms: anonymous, pseudonymous
- anonymity set
- even if I can't trace the bitcoins, I know it belongs to someone who has bitcoins! Which most people don't. try to increase anonymity set

how to lose the trail bitcoin mixers! coins at address A send 10 coins to the mixer, addr B later, 4 coins to addr C later, 6 coins to addr D

mixers

mixers work well

potential anonymity set is all other users of mixer

problem: mixers disappear with
everyone's money. consistently.

coinjoin

I taint rich (maxwell, bitcointalk.org, 2013)

mixing multiple users within a single transaction

coinjoin tx two different people in the same tx

input 0	output 0
user A signature	address C
10 coins	2 coins
input 1	output 1
user B signature	address D
2 coins	10 coins

coinjoin tx fun first (2nd?) tx

69d9d66aae4812b6cf156f32267b773fb2118db696bb847ebd3454a198b59fbd

input 0	output 0
user A signature	address C
10 coins	2 coins
input 1	output 1
user B signature	address D
2 coins	10 coins

coinjoin tx problems with this model? any way to tell who's who? input 0 output 0 user A signature address C 2 coins 10 coins input 1 output 1 user B signature address D 2 coins 10 coins

coinjoin tx

gee, maybe A->D, B->C

amounts are different

input 0	output 0
user A signature	address C
10 coins	2 coins
input 1	output 1
user B signature	address D
2 coins	10 coins

coinjoin tx how about this?

A signature 10 coins	address C 1 coin
B signature 2 coins	address D 7 coins
	address E 1 coin
	address F 3 coins

coinjoin tx

how about this?

... nice try but still no

A signature 10 coins	address C 1 coin
B signature 2 coins	address D 7 coins
	address E 1 coin
	address F 3 coins

coinjoin tx now?

A signature 10 coins	address C 2 coins
B signature 2 coins	address D 2 coins
	address E 8 coins

coinjoin tx this actually works; unclear if output C is from user A or B

A signature 10 coins	address C 2 coins
B signature 2 coins	address D 2 coins
	address E 8 coins

improving on coinjoin have more users, bigger anonymity set problem: users themselves know the mapping of inputs to outputs, can leak this info, hurtning anonymity

improving on coinjoin coinshuffle: pre-coinjoin messaging to shuffle inputs and outputs if at least 2 participants are honest, mapping is private

coinshuffle

everyone make public keys, send to everyone else. everyone also broadcast inputs

encrypt your output with everyone's
pubkeys sequentially

 $enc_{c}(enc_{b}(enc_{a}(output))) \rightarrow hand to a$

coinshuffle

user a receives encrypted outputs, shuffles and decrypts

hands still encrypted outputs to next user, who decrypts, shuffles

final user gets the outputs, but can't tell which belong to whom

everyone signs this tx

real world issues some people use this! ... which people use this? limited anonymity set of people who really want anonymity.

which is not the anonymity set the people who want anonymity want.

make coinjoin cheaper
people don't care about privacy
other people's privacy = externality
everyone likes cheaper txs though

make coinjoin cheaper
privacy and scalability can work
together

less information to store, less
information to link to users

aggregate signatures current signatures

input 0	output 0
user A <mark>signature</mark>	address E
10 coins	2 coins
input 1	output 1
user B <mark>signature</mark>	address F
2 coins	10 coins

aggregate signatures

input 0 10 coins	output 0 address E 2 coins
input 1	output 1
C = A+B <mark>signature</mark>	address F
2 coins	10 coins

aggregate signatures how to make this signature?

- Given
- pubkeys A, B
- message m
- need one signature R, s

aggregate signatures signature equation

- s = k h(m, R)c
- sG = R h(m, R)C

make c = a+b, but need to not share
private keys

aggregate signatures first, share R alice: make k_a , compute R_a , share R_a bob: make k_b , compute R_b , share R_b

aggregate signatures next, add R

both: compute $R = R_a + R_b$
aggregate signatures next, compute s's

alice: $s_a = k_a - h(m, R)a$ bob: $s_b = k_b - h(m, R)b$ share s_a and s_b

aggregate signatures finally, compute s sum

$$s = s_a + s_b$$

- $= k_a + k_b h(m, R)a h(m, R)b$
- = k h(m, R)(a+b)
- sG = R h(m, R)C

works!

aggregate signatures now users can save space, only 1 signature for n inputs

input 0 10 coins	output 0 address E 2 coins
input 1	output 1
C <mark>signature</mark>	address F
2 coins	10 coins

key attacks problem:

wait, I didn't sign that...

input 0 40000 coins	output 0 address E 40002 coins
input 1 user A&B <mark>signature</mark> 2 coins	

rogue key attacks observe (rich) key A on network make q, compute qG = Qcompute B = Q - Asend some coins to key B note that you don't know b, and can't sign 41

rogue key attacks spend from B and A you don't know b, you don't know a even though you don't know the private key for <u>either</u>, you know the private key for <u>both</u>!

c = a+b = a+(q-a) = q

rogue key attacks
require proof of knowledge of b
make b sign a message before
combining keys

rogue key attacks require proof of knowledge of b

make b sign a message before
combining keys

... but the whole point was to aggregate signatures!

delinearization

redefine signatures - still send to C

instead of singing with C=A+B, sign with C=(A*h(A))+(B*h(B))

delinearization sign with C = A*h(A)+B*h(B)c = a * h(A) + b * h(B)I know b = q - a, I know qc = a*h(A) + (q-a)*h(Q-A)

delinearization sign with C = A*h(A)+B*h(B)c = a * h(A) + b * h(B)I know b = q - a, I know qc = a*h(A) + (q-a)*h(Q-A)can't get rid of a*h(A) term

Wagner's birthday this actually isn't enough! Wagner: A Generalized Birthday Problem Finding a collision is hard, right? $2^{n/2}$ time

but that's a 2-collision

Wagner's birthday 2 collision: find A, B s.t. A = B general collision find A A B B B B c.t

find $A_0, A_1, \dots, A_i, B_0, B_1, \dots, B_j$ s.t. $\Sigma A = \Sigma B$

if you have lots of As and Bs, gets easier $$\ensuremath{{}_{49}}$

improved delinearization take the hash of all the keys together z = h(A, B)sign with C = A*h(z,0)+B*h(z,1)c = a*h(z,0) + b*h(z,1)this works, paper calls it "MuSig"

aggregate signatures first use: within my own wallet

saves space

input 0 (mine) 2 coins	output 0 address E 4 coins
input 1 (mine)	output 1
C <mark>signature</mark>	address F
3 coins	1 coin

aggregate signatures cooler use: with coinjoin

A 3 coins	address E 3 coin
B 3 coins	address F 3 coins
C 3 coins	address G 3 coin
D 3 coins signature	address H 3 coins

aggregate signatures helps scalability and privacy coinjoin tx is cheaper than solo tx one giant tx per block, with 1 sig? what about amounts... still an issue (next time: how to mix amounts)

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

MAS.S62 Cryptocurrency Engineering and Design Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.