
mas.s62
lecture 3
signatures

2018-02-14
Tadge Dryja

1

signatures
pset01 was about lamport signatures

There are other signature schemes,
some with cool features

Hash-based, RSA, ECDSA, EC schnorr

2

multiple use hash signatures
Problem with lamport signatures:

Multiple signatures from one key
allows forgeries

Solution: use more public keys

3

multiple use hash signatures
Easy way:

make 2 public keys, concatenate and
publish

For signatures, indicate use of key1
or key2

4

multiple use hash signatures
Signatures: same size

Public keys: 2X size

Private keys: 2X size..?

5

multiple use hash signatures
Signatures: same size

Public keys: 2X size

Private keys: 2X size..?
make a root private key, and
hash(root,1) for key 1, hash(root, 2)
for key 2.
In fact, private key can be 32 bytes 6

multiple use hash signatures

howto 32 byte privkey:

0row hash(seed,0,0), hash(seed,0,1)..

1row hash(seed,1,0), hash(seed,1,1)..

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 … (256)

… (256)

0

1
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

7

multiple use hash signatures

from 16KB to 32B. That's quite nice!

Can we do that with the pubkey..?

32B pubkey…?

8

multiple use hash signatures

from 16KB to 32B. That's quite nice!

Can we do that with the pubkey..?

32B pubkey…?

Commit to pubkey with
0 0 0 0 0 0 0 0

hash() (hash of all 16KB)0 1 2 3 4 5 6 7 ,
6

1,

,
7

,
5

1,

,
4

1,

,
3

1,

,
2

1,

,
1

1,

,
0

1,1,

9

multiple use hash signatures

private key -> 32B

public key -> 32B

signatures still big; actually get
bigger. Include full pubkey in
signature.

Can do better: commit to many pubkeys
10

multiple use hash signatures

Hash tree, or Merkle tree

Pub1 Pub3

hash
h,h

hash
0,1

Pub0

hash
2,3

Pub2

11

multiple use hash signatures

Prove Pub0 inclusion given root

Pub1 Pub3

root

hash
0,1

Pub0

hash
2,3

Pub2

12

multiple use hash signatures

Prove Pub0 inclusion given root

Pub1 Pub3

root

hash
0,1

Pub0

hash
2,3

Pub2

13

multiple use hash signatures

Prove Pub0 inclusion given root

Pub1 Pub3

root

hash
0,1

Pub0

hash
2,3

Pub2

14

multiple use hash signatures

only need 2 extra hashes, one per row

Pub1 Pub3

root

hash
0,1

Pub0

hash
2,3

Pub2

15

Merkle trees

Pu
b1

Pu
b3

ha ha

ro
ot

Invented for lamport
sigs

sh
0,
1

Pu
b0

sh
2,
3

Pu
b2

add O(n) elements in O(1) sized root

prove an element in the set with
O(log) n intermediate hashes

16

Merkle trees

Pu
b1

Pu
b3

ha ha

ro
ot

commit to 1024

signing keys

sh
0,
1

Pu
b0

sh
2,
3

Pu
b2

use root as pubkey

signature inclues proof that signing
key is a leaf in the tree

10*32 = 320B overhead. cool!
17

Merkle trees

Pu
b1

Pu
b3

ha ha

ro
ot

commit to 1024

signing keys

sh
0,
1

Pu
b0

sh
2,
3

Pu
b2

use root as pubkey

signature inclues proof that signing
key is a leaf in the tree

10*32 = 320B overhead. cool!
18

need more power

Hash based signatures are cool.

But we can do better. More powerful
signature schemes.

RSA ECDSA ECBN

19

RSA

Invented by locals :)

Not used in Bitcoin (or any currency)

Used for chaumian blinded cash

Basic setup: make 2 primes: p, q

n = p*q
20

RSA

Given p,q, computing n is easy.

Given n, finding p,q is hard!

A one way function… but not a hash
function.

21

RSA

Can do some fun math with this.

Set e = 3 (or 65537)

set d = some number you can compute
if you know p or q.
d = e-1 mod (p-1)*(q-1)

n is public. d is private.
p, q not needed after setup. e always the same

22

RSA

Sign: s = md mod n

Verify: se mod n == m

Can sign many times. And do lots of
cool stuff.

23

RSA

RSA key sizes are smaller than hash
based signatures; often 2048 bits
(256 bytes)

Somewhat tricky to implement! Lots of
ways to lose your private key

but Bitcoin (& other coins) uses
elliptic curve signatures 24

Intermission

3 min, walk around, ask questions
about pset . . .

then start on elliptic curves

25

elliptic curves

Curves. Bitcoin's curve is

y2 = x3 + 7

Simple, right?

26

elliptic curves

define point addition

line of 3 points

= 0

so P+Q-R=0

P+Q=-R
27

elliptic curves

point "multiplication"

take the tangent

to add a point

to itself

28

elliptic curves

note: actually "looks"
more like this because
it's modulo some big
prime number

We don't compute it
graphically so it's OK

29

point and scalar operations
(Note also works on exponents mod n)

a, b lowercase = scalar

A, B uppercase = point

what operations can we do?

30

point and scalar operations
scalars are regular unleaded numbers

a+b a-b a*b a/b

everything is OK! just numbers!

31

point and scalar operations
Points have addition defined… but not
multiplication and division

A+B A-B OK A*B A/B NO

add & subtract OK, but can't multiply
two points, or divide a point by a
point. Not defined.

32

point and scalar operations
Mixed operations

A+b A-b NO A*b A/b OK

adding points and scalars is undefined

point times scalar OK; repeat the
tangent doubling process. Division by
scalar also possible.

33

point and scalar operations
roster of ops: what can we do

a+b a-b a*b a/b (obvious)

A+B A-B A*b A/b

34

point and scalar operations
roster of ops: what can we do

a+b a-b a*b a/b (obvious)

A+B A-B A*b A/b

Pick some random point G

That's the generator point
Everyone agrees on G 35

EC private & public keys

private key a = 256 bit scalar

(same as one block from lamport priv)

public key ?

36

EC private & public keys

private key a = 256 bit scalar

(same as one block from lamport priv)

public key A = a*G

32 byte x coord, 32 byte y coord = 64B

37

EC private & public keys

private key a = 256 bit scalar

(same as one block from lamport priv)

public key A = a*G

32 byte x coord, 32 byte y coord = 64B

since curve is symmetric about x-axis, can encode x-coord only
and 1 bit for y. Down to 33 bytes.

38

ECDSA

What Bitcoin, other coins use today

It's ugly though…

Come up with another priv key k

r = x-coord of k*G

s = k-1(hash(m) + a*r)
39

ECDSA

Made to avoid a patent on a better
signature system

That patent has expired, we are free
to use the simpler better algo that
must not be named.

40

ECsig

Have message m, privkey a

make k, a new random private key

R = k*G

s = k - hash(m, R)a

signature = R, s
41

ECsig

given R,s verify:

s = k - hash(m, R)a

sG = kG - hash(m, R)aG

sG = R - hash(m, R)A

R == sG + hash(m,R)A
42

ECsig

Make up k and compute s,R? but need a

s = k - hash(m, R)a

without a, can't make a valid s

43

ECsig

Make up an s, solve for R?

sG = R - hash(m, R)A

44

ECsig

Make up an s, solve for R?

sG = R - hash(m, R)A

R = hash(m, R)A + sG

R = hash(R)! Can't compute, can't
cancel out

45

Fun with points

A = aG

B = bG

aB = bA = (aG)b = (bG)a = (ab)G = C

C is a "Diffie Hellman" point.

Super useful! If you know either a or
b, you can compute C. 46

Fun with points

A = aG

B = bG

aB = bA = (aG)b = (bG)a = (ab)G = C

C is a "Diffie Hellman" point.

47

Fun with points

A = aG B = bG

D = A+B = (a+b)G

sign with D? Can with d = a+b

make a combined key D = A+B; either
party can reveal their side to the
other to give signing ability

48

What do we do with this??

Nothing yet. Hard to program this
stuff.

Ground work for cool stuff you can do
with keys, transactions, signatures

Fun new area! Non-experts (like me)
can come up with new stuff!

49

Next pset: NameChain

Mine your name; get a high score

(hax0r names also OK)

pls don't DDoS the server :)

50

MIT OpenCourseWare
https://ocw.mit.edu/

MAS.S62 Cryptocurrency Engineering and Design
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

