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signatures 
pset01 was about lamport signatures 

There are other signature schemes, 
some with cool features 

Hash-based, RSA, ECDSA, EC schnorr 
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multiple use hash signatures 
Problem with lamport signatures: 

Multiple signatures from one key 
allows forgeries 

Solution: use more public keys 
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multiple use hash signatures 
Easy way: 

make 2 public keys, concatenate and 
publish 

For signatures, indicate use of key1 
or key2 
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multiple use hash signatures 
Signatures: same size 

Public keys: 2X size 

Private keys: 2X size..? 
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multiple use hash signatures 
Signatures: same size 

Public keys: 2X size 

Private keys: 2X size..? 
make a root private key, and 
hash(root,1) for key 1, hash(root, 2) 
for key 2. 
In fact, private key can be 32 bytes 6



multiple use hash signatures 

howto 32 byte privkey: 

0row hash(seed,0,0), hash(seed,0,1).. 

1row hash(seed,1,0), hash(seed,1,1).. 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 … (256) 

… (256) 

0 

1 
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 
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multiple use hash signatures 

from 16KB to 32B. That's quite nice! 

Can we do that with the pubkey..? 

32B pubkey…? 
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multiple use hash signatures 

from 16KB to 32B. That's quite nice! 

Can we do that with the pubkey..? 

32B pubkey…? 

Commit to pubkey with 
0 0 0 0 0 0 0 0 

hash( ) (hash of all 16KB)0 1 2 3 4 5 6 7 ,
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multiple use hash signatures 

private key -> 32B 

public key -> 32B 

signatures still big; actually get 
bigger. Include full pubkey in 
signature. 

Can do better: commit to many pubkeys 
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multiple use hash signatures 

Hash tree, or Merkle tree 

Pub1 Pub3 

hash 
h,h 

hash 
0,1 

Pub0 

hash 
2,3 

Pub2 
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multiple use hash signatures 

Prove Pub0 inclusion given root 

Pub1 Pub3 

root 

hash 
0,1 

Pub0 

hash 
2,3 

Pub2 
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multiple use hash signatures 
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multiple use hash signatures 

Prove Pub0 inclusion given root 

Pub1 Pub3 

root 

hash 
0,1 

Pub0 

hash 
2,3 

Pub2 
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multiple use hash signatures 

only need 2 extra hashes, one per row 

Pub1 Pub3 

root 

hash 
0,1 

Pub0 

hash 
2,3 

Pub2 
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Merkle trees 

Pu 
b1 

Pu 
b3 

ha ha 

ro 
ot 

Invented for lamport 
sigs 

sh 
0, 
1 

Pu 
b0 

sh 
2, 
3 

Pu 
b2 

add O(n) elements in O(1) sized root 

prove an element in the set with 
O(log) n intermediate hashes 
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Merkle trees 

Pu 
b1 

Pu 
b3 

ha ha 

ro 
ot 

commit to 1024 

signing keys 

sh 
0, 
1 

Pu 
b0 

sh 
2, 
3 

Pu 
b2 

use root as pubkey 

signature inclues proof that signing 
key is a leaf in the tree 

10*32 = 320B overhead. cool! 
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Merkle trees 

Pu 
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Pu 
b3 
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ro 
ot 
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signing keys 

sh 
0, 
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Pu 
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sh 
2, 
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signature inclues proof that signing 
key is a leaf in the tree 

10*32 = 320B overhead. cool! 
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need more power 

Hash based signatures are cool. 

But we can do better. More powerful 
signature schemes. 

RSA ECDSA ECBN 
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RSA 

Invented by locals :) 

Not used in Bitcoin (or any currency) 

Used for chaumian blinded cash 

Basic setup: make 2 primes: p, q 

n = p*q 
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RSA 

Given p,q, computing n is easy. 

Given n, finding p,q is hard! 

A one way function… but not a hash 
function. 
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RSA 

Can do some fun math with this. 

Set e = 3 (or 65537) 

set d = some number you can compute 
if you know p or q. 
d = e-1 mod (p-1)*(q-1) 

n is public. d is private. 
p, q not needed after setup. e always the same 
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RSA 

Sign: s = md mod n 

Verify: se mod n == m 

Can sign many times. And do lots of 
cool stuff. 
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RSA 

RSA key sizes are smaller than hash 
based signatures; often 2048 bits 
(256 bytes) 

Somewhat tricky to implement! Lots of 
ways to lose your private key 

but Bitcoin (& other coins) uses 
elliptic curve signatures 24



Intermission 

3 min, walk around, ask questions 
about pset . . . 

then start on elliptic curves 
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elliptic curves 

Curves. Bitcoin's curve is 

y2 = x3 + 7 

Simple, right? 
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elliptic curves 

define point addition 

line of 3 points 

= 0 

so P+Q-R=0 

P+Q=-R 
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elliptic curves 

point "multiplication" 

take the tangent 

to add a point 

to itself 
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elliptic curves 

note: actually "looks" 
more like this because 
it's modulo some big 
prime number 

We don't compute it 
graphically so it's OK 
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point and scalar operations 
(Note also works on exponents mod n) 

a, b lowercase = scalar 

A, B uppercase = point 

what operations can we do? 
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point and scalar operations 
scalars are regular unleaded numbers 

a+b a-b a*b a/b 

everything is OK! just numbers! 
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point and scalar operations 
Points have addition defined… but not 
multiplication and division 

A+B A-B OK A*B A/B NO 

add & subtract OK, but can't multiply 
two points, or divide a point by a 
point. Not defined. 
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point and scalar operations 
Mixed operations 

A+b A-b NO A*b A/b OK 

adding points and scalars is undefined 

point times scalar OK; repeat the 
tangent doubling process. Division by 
scalar also possible. 
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point and scalar operations 
roster of ops: what can we do 

a+b a-b a*b a/b (obvious) 

A+B A-B A*b A/b 
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point and scalar operations 
roster of ops: what can we do 

a+b a-b a*b a/b (obvious) 

A+B A-B A*b A/b 

Pick some random point G 

That's the generator point 
Everyone agrees on G 35



EC private & public keys 

private key a = 256 bit scalar 

(same as one block from lamport priv) 

public key ? 
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EC private & public keys 

private key a = 256 bit scalar 

(same as one block from lamport priv) 

public key A = a*G 

32 byte x coord, 32 byte y coord = 64B 
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EC private & public keys 

private key a = 256 bit scalar 

(same as one block from lamport priv) 

public key A = a*G 

32 byte x coord, 32 byte y coord = 64B 

since curve is symmetric about x-axis, can encode x-coord only 
and 1 bit for y. Down to 33 bytes. 
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ECDSA 

What Bitcoin, other coins use today 

It's ugly though… 

Come up with another priv key k 

r = x-coord of k*G 

s = k-1(hash(m) + a*r) 
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ECDSA 

Made to avoid a patent on a better 
signature system 

That patent has expired, we are free 
to use the simpler better algo that 
must not be named. 
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ECsig 

Have message m, privkey a 

make k, a new random private key 

R = k*G 

s = k - hash(m, R)a 

signature = R, s 
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ECsig 

given R,s verify: 

s = k - hash(m, R)a 

sG = kG - hash(m, R)aG 

sG = R - hash(m, R)A 

R == sG + hash(m,R)A 
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ECsig 

Make up k and compute s,R? but need a 

s = k - hash(m, R)a 

without a, can't make a valid s 
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ECsig 

Make up an s, solve for R? 

sG = R - hash(m, R)A 
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ECsig 

Make up an s, solve for R? 

sG = R - hash(m, R)A 

R = hash(m, R)A + sG 

R = hash(R)! Can't compute, can't 
cancel out 
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Fun with points 

A = aG 

B = bG 

aB = bA = (aG)b = (bG)a = (ab)G = C 

C is a "Diffie Hellman" point. 

Super useful! If you know either a or 
b, you can compute C. 46



Fun with points 

A = aG 

B = bG 

aB = bA = (aG)b = (bG)a = (ab)G = C 

C is a "Diffie Hellman" point. 
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Fun with points 

A = aG B = bG 

D = A+B = (a+b)G 

sign with D? Can with d = a+b 

make a combined key D = A+B; either 
party can reveal their side to the 
other to give signing ability 
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What do we do with this?? 

Nothing yet. Hard to program this 
stuff. 

Ground work for cool stuff you can do 
with keys, transactions, signatures 

Fun new area! Non-experts (like me) 
can come up with new stuff! 

49



Next pset: NameChain 

Mine your name; get a high score 

(hax0r names also OK) 

pls don't DDoS the server :) 
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