Example Problem 7.1
Given the following expression for the internal energy of a system:

\[U = \frac{V_0 \theta S^3}{R^2 NV} \]

Solution 7.1

a.

\[P = \left(\frac{\partial U}{\partial V} \right)_{S,N} = \frac{V_0 \theta S^3}{R^2 NV^2} \]

\[T = \left(\frac{\partial U}{\partial S} \right)_{V,N} = \frac{V_0 \theta 3S^2}{R^2 NV} \]

\[\mu = \left(\frac{\partial U}{\partial N} \right)_{S,V} = -\frac{V_0 \theta S^3}{R^2 VN^2} \]

b. Intensive quantities are independent of the size of a system. We know that \(N, S, \) and \(V \) are extensive quantities and additive. If one system is characterized by \(N, S, \) and \(V \) then \(\lambda \) systems joined together to form a supersystem are characterized by \(\lambda N, \lambda S, \) and \(\lambda V. \)

\[P(\lambda) = \frac{V_0 \theta (\lambda S)^3}{R^2 \lambda N (\lambda V)^2} = \frac{V_0 \theta S^3}{R^2 NV^2} \]

\[T(\lambda) = \frac{V_0 \theta 3(\lambda S)^2}{R^2 \lambda^2 NV} = \frac{V_0 \theta 3S^2}{R^2 NV} \]

\[\mu(\lambda) = -\frac{V_0 \theta (\lambda S)^3}{R^2 \lambda V (\lambda N)^2} = -\frac{V_0 \theta S^3}{R^2 VN^2} \]

By inspection it is apparent that \(P, T, \) and \(\mu \) are independent of the size of the system.

c.

\[dU(S, N, V) = \left(\frac{\partial U}{\partial V} \right)_{S,N} dV + \left(\frac{\partial U}{\partial S} \right)_{V,N} dS + \left(\frac{\partial U}{\partial N} \right)_{S,V} dN \]

\[dU(S, N, V) = -PdV + TdS + \mu dN \]

\[dU(S, N, V) = -\frac{V_0 \theta S^3}{R^2 NV^2} dV + \frac{V_0 \theta 3S^2}{R^2 NV} dS - \frac{V_0 \theta S^3}{R^2 VN^2} dN \]
Example Problem 7.2

Pure nickel exists in two solid forms α-Ni (fcc) and β-Ni (bcc) with the transition at $T_{a\rightarrow\beta} = 630K$ at atmospheric pressure. β-Ni melts at $T_m = 1728K$. The enthalpy of formation of α-Ni at 298K is $\Delta H_{a,0} = 0J/mole$. The entropy of formation of α-Ni at 298K is $\Delta S_{a,0} = 29.8J/moleK$. The heat capacities of the solid forms are given below. Calculate the enthalpy and entropy of transformation, $\Delta H_{a\rightarrow\beta}$ and $\Delta S_{a\rightarrow\beta}$, respectively, for the $\alpha \rightarrow \beta$ transition in terms of the given data and the enthalpy of β-Ni at the melting temperature, $\Delta H_{\beta,T_m}$.

\[
\overline{C}_{p,a} = 32.6 - 1.97 \cdot 10^{-3}T - 5.586 \cdot 10^5 \frac{1}{T^2}
\]
\[
\overline{C}_{p,\beta} = 29.7 + 4.18 \cdot 10^{-3}T - 9.33 \cdot 10^5 \frac{1}{T^2}
\]

Solution 7.2 This is an exercise in manipulating standard state information. We start by recognizing that at the equilibrium transformation temperature the molar Gibbs free energies of the α and β phases, $\overline{G}_a(T_{a\rightarrow\beta})$ and $\overline{G}_\beta(T_{a\rightarrow\beta})$, respectively, are equal.

\[
\Delta \overline{G}_{a\rightarrow\beta} = \overline{G}_\beta - \overline{G}_a
\]
\[
\overline{G}_{a\rightarrow\beta} = \overline{G}_{a,0} + \int_{298}^{630} \overline{C}_{p,a} dT - \overline{G}_{\beta,1728} - \int_{1728}^{630} \overline{C}_{p,\beta} dT
\]
\[
\overline{G}_{a\rightarrow\beta} = 0J/mole + \int_{298}^{630} \left(32.6 - 1.97 \cdot 10^{-3}T - 5.586 \cdot 10^5 \frac{1}{T^2}\right) dT
\]
\[
-\overline{G}_{\beta,1728} - \int_{1728}^{630} \left(29.7 + 4.18 \cdot 10^{-3}T - 9.33 \cdot 10^5 \frac{1}{T^2}\right) dT
\]
\[
\overline{G}_{a\rightarrow\beta} = 9578J/mole - \overline{G}_{\beta,1728} + 370801J/mole
\]
\[
\overline{G}_{a\rightarrow\beta} = -46659J/mole - \overline{G}_{\beta,1728}
\]

We know that $\overline{G}_{a,630} = \overline{G}_{\beta,630}$ at atmospheric pressure. From this we find the following relation for the entropy of transformation.

\[
\Delta \overline{S}_{a\rightarrow\beta} = 0
\]
\[
\Delta \overline{G}_{a\rightarrow\beta} - 630 \Delta \overline{S}_{a\rightarrow\beta} = 0
\]
\[
\Delta \overline{S}_{a\rightarrow\beta} = \frac{-46659J/mole - \overline{G}_{\beta,1728}}{630}
\]

We expect both the entropy and enthalpy of transformation to be positive. From this they have the same sign and it is expected to be positive depending on $\overline{G}_{\beta,1728}$.