Mathematical Relations and Changing Variables

Last Time

Reaction Equilibria

Exact Differentials

Legendre Transformations

Lechatelier’s Principle
Maxwell’s Relations

\[df = \left(\frac{\partial f}{\partial x} \right)_y \ dx + \left(\frac{\partial f}{\partial y} \right)_x \ dy \] \hspace{1cm} (22-1)

A property of a perfect differential is:

\[\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \] \hspace{1cm} (22-2)

If Equation 22-2 is applied to \(dU = TdS - PdV \):

\[\frac{\partial^2 U}{\partial V \partial S} = - \left(\frac{\partial P}{\partial S} \right)_V \quad \frac{\partial^2 U}{\partial S \partial V} = \left(\frac{\partial T}{\partial V} \right)_S \] \hspace{1cm} (22-3)

This can be summarized in the following tables (you should be able to derive these tables on your own):

<table>
<thead>
<tr>
<th>Internal Energy (U)</th>
<th>Second Law Formulation</th>
<th>Independent Variables</th>
<th>Conjugate Variables</th>
<th>Maxwell Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dU = TdS)</td>
<td>(S)</td>
<td>(T = \left(\frac{\partial U}{\partial S} \right)_{V,N_i})</td>
<td>((\frac{\partial U}{\partial V}){S,N_i} = - (\frac{\partial T}{\partial S}){V,N_i})</td>
<td></td>
</tr>
<tr>
<td>(-PdV)</td>
<td>(V)</td>
<td>(-P = \left(\frac{\partial U}{\partial V} \right)_{S,N_i})</td>
<td>((\frac{\partial P}{\partial V}){S,N_i} = - (\frac{\partial P}{\partial N_i}){S,V,N_j \neq N_i})</td>
<td></td>
</tr>
<tr>
<td>(+ \sum_{i=1}^C \mu_i dN_i)</td>
<td>(N_i)</td>
<td>(\mu_i = \left(\frac{\partial U}{\partial N_i} \right)_{S,V,N_j \neq N_i})</td>
<td>((\frac{\partial \mu_i}{\partial V}){S,N_i} = - (\frac{\partial \mu_i}{\partial N_i}){S,V,N_j \neq N_i})</td>
<td></td>
</tr>
</tbody>
</table>
Enthalpy H

<table>
<thead>
<tr>
<th>Second Law Formulation</th>
<th>Independent Variables</th>
<th>Conjugate Variables</th>
<th>Maxwell Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dH = TdS + VdP + \sum_{i=1}^{C} \mu_i dN_i$</td>
<td>S</td>
<td>$T = \left(\frac{\partial H}{\partial S} \right)_{V,N_i}$</td>
<td>$(\frac{\partial H}{\partial S}){V,N_i} = \left(\frac{\partial V}{\partial S} \right){P,N_i}$</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>$V = \left(\frac{\partial H}{\partial P} \right)_{S,N_i}$</td>
<td>$(\frac{\partial H}{\partial P}){S,N_i} = \left(\frac{\partial V}{\partial N_i} \right){S,P,N_i \neq N_i}$</td>
</tr>
<tr>
<td></td>
<td>N_i</td>
<td>$\mu_i = \left(\frac{\partial H}{\partial N_i} \right)_{S,P,N_i \neq N_i}$</td>
<td>$(\frac{\partial H}{\partial N_i})_{S,P,N_i \neq N_i}$</td>
</tr>
</tbody>
</table>

Helmholtz Free Energy F

<table>
<thead>
<tr>
<th>Second Law Formulation</th>
<th>Independent Variables</th>
<th>Conjugate Variables</th>
<th>Maxwell Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dF = -SdT - PdV + \sum_{i=1}^{C} \mu_i dN_i$</td>
<td>T</td>
<td>$-S = \left(\frac{\partial F}{\partial T} \right)_{V,N_i}$</td>
<td>$(\frac{\partial F}{\partial T}){V,N_i} = \left(\frac{\partial H}{\partial T} \right){V,N_i}$</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>$-P = \left(\frac{\partial F}{\partial V} \right)_{T,N_i}$</td>
<td>$(\frac{\partial F}{\partial V}){T,N_i} = - \left(\frac{\partial H}{\partial V} \right){T,V,N_i \neq N_i}$</td>
</tr>
<tr>
<td></td>
<td>N_i</td>
<td>$\mu_i = \left(\frac{\partial F}{\partial N_i} \right)_{T,V,N_i \neq N_i}$</td>
<td>$(\frac{\partial F}{\partial N_i})_{T,V,N_i \neq N_i}$</td>
</tr>
</tbody>
</table>

Gibbs Free Energy G

<table>
<thead>
<tr>
<th>Second Law Formulation</th>
<th>Independent Variables</th>
<th>Conjugate Variables</th>
<th>Maxwell Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dG = -SdT + VdP + \sum_{i=1}^{C} \mu_i dN_i$</td>
<td>T</td>
<td>$-S = \left(\frac{\partial G}{\partial T} \right)_{P,N_i}$</td>
<td>$(\frac{\partial G}{\partial T}){P,N_i} = \left(\frac{\partial H}{\partial T} \right){P,N_i}$</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>$V = \left(\frac{\partial G}{\partial V} \right)_{T,N_i}$</td>
<td>$(\frac{\partial G}{\partial V}){T,N_i} = - \left(\frac{\partial H}{\partial V} \right){T,P,N_i \neq N_i}$</td>
</tr>
<tr>
<td></td>
<td>N_i</td>
<td>$\mu_i = \left(\frac{\partial G}{\partial N_i} \right)_{T,P,N_i \neq N_i}$</td>
<td>$(\frac{\partial G}{\partial N_i})_{T,P,N_i \neq N_i}$</td>
</tr>
</tbody>
</table>

Change of Variable

Sometimes it is more useful to be able to measure some quantity, such as

\[
C_P = T \left(\frac{\partial S}{\partial T} \right)_P = f_1(T, P)
\]

(22-4)

or

\[
C_V = T \left(\frac{\partial S}{\partial T} \right)_V = f_2(T, V)
\]

(22-5)

under different conditions than those indicated by their natural variables.

It would be easier to measure C_V at constant P, T, so a change of variable would be useful.
To change variables, a useful scheme using Jacobians can be employed:

\[
\frac{\partial(u, v)}{\partial(x, y)} \equiv \det \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \frac{\partial u \partial v}{\partial x \partial y} - \frac{\partial u \partial v}{\partial y \partial x} \\
= \left(\frac{\partial u}{\partial x} \right)_y \left(\frac{\partial v}{\partial y} \right)_x - \left(\frac{\partial u}{\partial y} \right)_x \left(\frac{\partial v}{\partial x} \right)_y \\
= \frac{\partial u(x, y)}{\partial x} \frac{\partial v(x, y)}{\partial y} - \frac{\partial u(x, y)}{\partial y} \frac{\partial v(x, y)}{\partial x}
\]

(22-6)

To see where the last rule comes from:

For example,

\[
C_V = T \left(\frac{\partial S}{\partial T} \right)_V = T \frac{\partial(S, V)}{\partial(T, V)}
\]

(22-8)

23 An alternative scheme is presented in Denbigh, Sec. 2.10(c)
Using the Maxwell relation: \(\left(\frac{\partial S}{\partial P} \right)_T = - \left(\frac{\partial V}{\partial T} \right)_P \):

\[
C_P - C_V = -T \left[\frac{\left(\frac{\partial V}{\partial T} \right)_P}{\left(\frac{\partial V}{\partial P} \right)_T} \right]^2
\] \((22-9) \)