Lecture 14: 10.31.05 Batteries continued; Thermodynamic stability

Today:

THERMODYNAMICS OF A BATTERY, CONTINUED ... 2
An example calculation: Thermodynamics of a fuel cell ... 4
IMPLICATIONS OF STABILITY REQUIREMENTS FOR THE PROPERTIES OF MATERIALS .. 5
Le Chatelier’s principle ... 5
Constraints on thermodynamic properties ensure stability: example of internal energy constraints .. 5
REQUIREMENTS FOR THE SHAPE OF FREE ENERGY CURVES ... 8
MAXWELL RELATIONS .. 10
The Euler Relationship and Maxwell Relations .. 10
REFERENCES .. 11

Reading:

Engel and Reid 6.2 (Maxwell relations)

Supplementary Reading: -

Announcements:

PS 5 will be posted later today; due 1 week from this Thurs. (11/10/05)
Thermodynamics of a battery, continued

- Last time, we began the analysis of how a battery converts chemical work into electrical work (transport of electrons). This system introduces a new form of internal energy, arising from the transport of charged species, which is incorporated into the fundamental equation for a system as the electrochemical potential:

\[
\Delta G_{rxn} = \mu_{Ca}^{IV} + \mu_{Zn^{2+}}^{II} + 2\mu_{e}^{0} + \mu_{Cu^{2+}}^{III} + \mu_{Zn}^{I} + 2\mu_{e}^{0} + \mu_{Cu^{2+}}^{IV}
\]

- The script \(F \) in this expression is the Faraday constant: \(F = 96,485 \frac{C}{\text{mole e}} \)

- We applied this new term for electrochemical potentials in our analysis of the Daniell cell.

Half-cell reactions:

\[
\rightarrow Zn^{I} \rightleftharpoons (Zn^{2+})^{II} + 2(e^{-})^{I}
\]

\[
\rightarrow (Cu^{2+})^{III} + 2(e^{-})^{IV} \rightleftharpoons Cu^{IV}
\]

Total reaction for system:

\[
Zn^{I} + (Cu^{2+})^{III} \rightleftharpoons (Zn^{2+})^{II} + Cu^{IV}
\]

- We showed last time that the electrical potential difference obtained across the electrodes I and IV is related to the free energy of reaction by the Nernst Equation:

\[
\Delta \phi = \frac{-\Delta G_{RXN}}{nF}
\]

\[
\Delta G_{RXN} = \mu_{Ca}^{IV} + \mu_{Zn^{2+}}^{II} + 2\mu_{e}^{0} - \mu_{Zn}^{I} - \mu_{Cu^{2+}}^{III} - 2\mu_{e}^{0} - \mu_{Cu^{2+}}^{IV}
\]
How can we further simplify this expression? Recall that we have sulfate ion equilibration through the membrane between the aqueous solutions II and III:

\[
\left(\mu_{SO_4^{2-}}^I \right)^{II} = \left(\mu_{SO_4^{2-}}^I \right)^{III}
\]

\[
\mu_{SO_4^{2-}}^I - 2\phi^I F = \mu_{SO_4^{2-}}^III - 2\phi^III F
\]

(C) \[\phi^II = \phi^III \]

\[\begin{align*}
N_{SO_4^{2-}}^I &= N_{SO_4^{2-}}^III \\
N_{Cu^{2+}}^I &= N_{Cu^{2+}}^III \\
N_{Zn^{2+}}^I &= N_{Zn^{2+}}^III
\end{align*} \]

For a reversible reaction, we call the potential difference the electromotive force, or EMF:

\[
E = \text{EMF} = \Delta \phi^\text{REV} = -\frac{\Delta G^o_{\text{REV}}}{n^F}
\]

STANDARD POTENTIAL:

\[
E^0 = -\frac{\Delta G^o_{\text{REV}}}{n^F}
\]

The U.S. convention is that EMF is positive when reactions are written to proceed spontaneously from left to right (i.e. Zn is the left electrode).

FOR THE DANIEL CELL:

\[
E = -\frac{\Delta G^o_{\text{REV}}}{2F} = -\frac{1}{2F} \left[\Delta G^o_{\text{REV}} + RT \ln \frac{a_{Zn^{2+}}^{III}}{a_{Cu^{2+}}^{II}} \right]
\]

\[
E = E^0 - \frac{RT}{2F} \ln \frac{a_{Zn^{2+}}^{III}}{a_{Cu^{2+}}^{II}} \rightarrow a_i = Y_i X_i
\]

\[
E = E^0 - \frac{RT}{n^F} \ln Q \quad \text{... in general}
\]
An example calculation: Thermodynamics of a fuel cell

- Consider again a fuel cell similar to the one shown schematically in the last lecture notes. A more simplified schematic is shown below:

(Silbey et al.)

- The Half-cell reactions and overall reaction are:

\[
\begin{align*}
\frac{1}{2} O_{2(g)} + 2H^+ + 2e^- & \leftrightarrow H_2O_{(l)} \\
H_{2(g)} & \leftrightarrow 2H^+ + 2e^- \\
\frac{1}{2} O_{2(g)} + H_{2(g)} & \leftrightarrow H_2O_{(l)}
\end{align*}
\]

\[E^0 = 1.2288 \text{ V}\]

- If a certain fuel cell runs with \(P_{O_2} = P_{H_2} = 5000 \text{ psi (340 atm)}\), what voltage is achieved by the cell? Assume the gases can be treated as ideal.

\[
\Delta G_{R,\text{xn}} = \Delta G_{R,\text{xn}}^0 + RT \ln \left(\frac{P_{O_2}}{P^0} \right)^{1/2} \left(\frac{P_{H_2}}{P^0} \right)^{1/2}
\]

\[E = E^0 + RT \ln \left(\frac{P_{O_2}}{P^0} \right)^{1/2} \left(\frac{P_{H_2}}{P^0} \right)^{1/2}
\]

\[= 1.2288 \text{ V} + 0.1172 \text{ V} = 1.346 \text{ V}
\]

\[T = 298 \text{ K}\]
Implications of stability requirements for the properties of materials

Le Chatelier’s principle

- Materials are most useful in stable equilibrium states- conditions where the material is resistant to change if the system experiences small fluctuations in its state. For example, if the temperature and pressure are held constant at \((T_0, P_0)\), then stable equilibrium is identified by finding the minimum value of \(G\) in the landscape of possible \(U, S,\) and \(V\) values taken by the system. Using a figure from our first lecture:

\[
G = H - TS = U - T_0S + P_0V
\]

- **Le Chatelier’s principle** states that a system perturbed by a small fluctuation will feel a thermodynamic driving force to return to the stable equilibrium state.

Constraints on thermodynamic properties ensure stability: example of internal energy constraints

- **MAIN IDEA**: Many of the thermodynamic properties of materials can only have certain values if the material is in a stable equilibrium state.

- Recall the equilibrium condition in terms of internal energy: For conditions of fixed total entropy, the internal energy of the system is minimized. Graphically, this means:
For equilibrium to be stable against fluctuations in S only or V only:

- Simple system: \(U = U(S, V) \) (Assume \(V \) fixed)
 1. \(\left(\frac{\partial^2 U}{\partial S^2} \right)_{V} \geq 0 \)
 2. \(\left(\frac{\partial^2 U}{\partial V^2} \right)_{S} \geq 0 \)

For equilibrium to be stable against coupled fluctuations in both S and V:

\[
d^2 U \geq 0 \quad d^2 U = \left(\frac{\partial^2 U}{\partial S^2} \right)_{V} dS^2 + \left(\frac{\partial^2 U}{\partial V^2} \right)_{S} dV^2 + 2 \left(\frac{\partial^2 U}{\partial S \partial V} \right) dS dV \geq 0
\]

which is equivalent to:

\[
\left[\left(\frac{\partial^2 U}{\partial S^2} \right) dS + \left(\frac{\partial^2 U}{\partial S \partial V} \right) dV \right]^2 + \left[\left(\frac{\partial^2 U}{\partial V^2} \right) dV + \left(\frac{\partial^2 U}{\partial S \partial V} \right) dS \right]^2 \geq 0
\]

Always \(\geq 0 \)

- \(\left(\frac{\partial^2 U}{\partial S^2} \right) - \left(\frac{\partial^2 U}{\partial S \partial V} \right)^2 \geq 0 \)
These requirements on the shape of the internal energy surface are linked to values of thermodynamic parameters of the system:

\[
\left(\frac{\partial^2 U}{\partial S^2}\right)_{V,n} \geq 0 \quad \frac{\partial}{\partial S}\left[\frac{\partial U}{\partial S}\right]_{V,n} = \left(\frac{\partial T}{\partial S}\right)_{V,n} = \frac{T}{c_V} \geq 0
\]

Absolute \(T > 0 \) by def'n!

\[c_V \geq 0 \quad \text{for stability}
\]

\[S^\uparrow \text{ as } T^\uparrow
\]

- **This is the requirement for thermal stability.** Since the absolute temperature must be \(> 0 \) the heat capacity must also be greater than 0. In addition, the entropy must increase if the temperature increases, for stability.

Next, we have:

\[
\left(\frac{\partial^2 U}{\partial V^2}\right)_{S,n} \geq 0
\]

\[
\frac{\partial}{\partial V}\left[\frac{\partial U}{\partial V}\right]_{S,n} = -\left(\frac{\partial P}{\partial V}\right)_{S,n} = -\frac{1}{k_V} \geq 0
\]

\[k_S = -\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{S,n}
\]

- **This is the condition for mechanical stability.**

From this analysis, we see that **many properties of materials may only have certain values if the material is to be stable.** There are numerous other examples that can be derived using the other thermodynamic functions. In summary, one can prove:

\[
C_P \geq C_V \geq 0
\]

\[
\kappa_T \geq \kappa_S \geq 0
\]
Requirements for the shape of free energy curves

- What does the free energy as a function of typical experimental parameters look like - for example, what does a plot of G vs. T look like? What about G vs. P? Do we know anything (qualitatively) about how it must look? The answer is yes: the relationships between the Gibbs free energy and other thermodynamic parameters tell us numerous things about how plots of G vs. various thermodynamic variables must behave in stable thermodynamic systems:

 o Consider a plot of G vs. temperature:

 ![Graphs showing the behavior of G vs. T]

 \[
 \left(\frac{\partial G}{\partial T} \right)_{P,N} \quad > \quad 0 \quad \text{or} \quad < \quad 0 \quad ?
 \]
 \[
 \left(\frac{\partial^2 G}{\partial T^2} \right)_{P,N} \quad \geq \quad 0 \quad \text{or} \quad < \quad 0 \quad ?
 \]

 o What should the slope of this curve be?
 - Using our differential expression for G:

 \[
 dG = VdP - SdT + \sum_{j=1}^{P} \sum_{i=1}^{C} \mu_i^j \, dn_i^j
 \]

 ...and combining this with the algebraic definition of the differential for \(G(T,P,N) \):

 \[
 dG = \left(\frac{\partial G}{\partial T} \right)_{P,N} \, dT + \left(\frac{\partial G}{\partial P} \right)_{T,N} \, dP + \sum_{j=1}^{P} \sum_{i=1}^{C} \left(\frac{\partial G}{\partial n_i^j} \right)_{T,N} \, dn_i^j
 \]

 \[
 \left(\frac{\partial G}{\partial T} \right)_{P,N} = -S \quad \text{since} \quad S \geq 0 \quad \text{for stability,}
 \]

 ...thus, the slope of the curve is \(-S\). THEN SLOPE \(\leq 0 \)

 o What is the curvature of G vs. T?
 - The curvature is given by the second derivative of G vs. T - it is the rate of change of the slope:
The curvature is also related to known thermodynamic quantities:

\[
\left(\frac{\partial^2 G}{\partial T^2} \right)_{P,N} = \frac{\partial}{\partial T} \left[\frac{\partial (-S)}{\partial T} \right]_{P,N} = -\left(\frac{\partial S}{\partial T} \right)_{P,N} = -\frac{C_p}{T} \leq 0
\]

- The heat capacity and the absolute temperature must always be \(\geq 0 \), thus the curvature must be \(< 0 \). *Thus plots of the free energy vs. temperature at constant pressure must always have the general shape shown at left above.*

- Similar analyses may be applied to predict the shape of other free energy curves of interest.
Maxwell Relations

The Euler Relationship and Maxwell Relations

- We’ve already discussed some of the useful properties of state functions like U, S, and H—they are path independent and integrable. An additional useful characteristic is that state functions must obey the Euler reciprocal relationship, which is expressed mathematically for a multivariate function $f(x,y)$ as:

\[
\frac{\partial f (x,y)}{\partial x} \frac{\partial y}{\partial y} = \frac{\partial f (x,y)}{\partial y} \frac{\partial x}{\partial x}
\]

EULER RELATIONSHIP

- The Euler relationship can be used to identify identities between thermodynamic variables that are not obvious; these are called the Maxwell relations.

- A set of Maxwell relations can be derived for each thermodynamic state function. For example, starting with the internal energy $U(S,V,N)$:

\[
\frac{\partial^2 U}{\partial V \partial S} = \frac{\partial^2 U}{\partial S \partial V}
\]

\[
\frac{\partial^2 U}{\partial V \partial S} = \left[\frac{\partial}{\partial S} \left[\frac{\partial U}{\partial V} \right] \right]_{S,n} = \frac{\partial P}{\partial S} v_n
\]

- Maxwell’s relations can help us further derive thermodynamic quantities from measurable parameters of our materials.

- Another example is the Maxwell relation obtained by taking second derivatives of the enthalpy $H(S,P,N)$:

\[
\frac{\partial^2 H}{\partial S \partial P} = \frac{\partial^2 H}{\partial P \partial S}
\]

\[
\frac{\partial^2 H}{\partial S \partial P} = \left(\frac{\partial T}{\partial P} \right)_{S,n}
\]

- Summarizing these relationships for each of our main thermodynamic functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Maxwell Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>$\frac{\partial P}{\partial V} = \frac{\partial T}{\partial S}$</td>
</tr>
<tr>
<td>H</td>
<td>$\frac{\partial V}{\partial S} = \frac{\partial P}{\partial T}$</td>
</tr>
<tr>
<td>G</td>
<td>$\frac{\partial S}{\partial P} = \frac{\partial V}{\partial T}$</td>
</tr>
<tr>
<td>F</td>
<td>$\frac{\partial T}{\partial V} = \frac{\partial S}{\partial P}$</td>
</tr>
</tbody>
</table>
References

Reference Type: Book
Record Number: 34
Author: Silbey, R.J.; Alberty, R.A.; Bawendi, M.G.
Year: 2005
Title: Physical Chemistry
City: New York
Publisher: John Wiley
Number of Pages: 944
Edition: 4th

Reference Type: Electronic Source
Record Number: 1
Author: Carter, W.C.
Year: 2002
Title: 3.00 Thermodynamics of Materials Lecture Notes
URL: http://pruffle.mit.edu/3.00/