Radiation:

\[-k \frac{\partial T}{\partial x} = -\varepsilon \sigma \left[T_{surf}^4 - T_{source}^4 \right] \]

\[M = \varepsilon \sigma \frac{L}{k} T_{surf}^3 \]

\[\frac{\partial T}{\partial t} = \alpha \nabla^2 T \]

\[q = \varepsilon \sigma \left(T_{surf}^4 - T_{source}^4 \right) \]

⇒ Very few analytical solutions, some charts
CVD: Chemical Vapor Deposition

At steady state the thermocouple outputs a temperature reading T_{TC}

TC is heated by gas (convection)

\[-h(T - T_f)A = \varepsilon \sigma (T_{surf}^4 - T_{source}^4)A \]

\[T_{TC} = T_f - \frac{\varepsilon \sigma}{h} (T_{surf}^4 - T_{source}^4) \]

\[T_{TC} \neq T_f \]

$T_f \approx 1000^\circ C$, $T_{wall} \approx 500^\circ C$,

$\varepsilon = 0.1$, $h = 100 W m^2 K$

\[T_{TC} \approx 830^\circ C, \Delta T \approx 200^\circ C \]

Conclusions:

1. Objects that “see” cold surroundings are colder than you think
2. If an object “sees” a hot source it can be unexpectedly hot
3. “In vacuum” indicates no convection → radiation must be important

Topics Covered So Far:

<table>
<thead>
<tr>
<th>Heat</th>
<th>Beat</th>
<th>Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>heat transfer</td>
<td>solid mechanics</td>
<td>diffusion</td>
</tr>
<tr>
<td>fluid mechanics</td>
<td></td>
<td>phase transition</td>
</tr>
</tbody>
</table>
Next step is to discuss heat transfer combined with diffusion and phase transformations.

Solidification: Heat transfer plus phase transition, single component solidification

What are the B.C at the solid/liquid interface?

1. \(T = T_m \)
2. heat balance:
 \[
 -k_s \frac{\partial T}{\partial x}\Bigg|_s = -k_l \frac{\partial T}{\partial s}\Bigg|_l
 \]
3. heat of fusion

Look closely:

\(q_{in} = -k_l \frac{\partial T}{\partial x}\Bigg|_{x=s,l} \)
\[q_{\text{out}} = -k_s \frac{\partial T}{\partial x} \bigg|_{x=s,s} \]

Fusion: \[-H_f \left[\frac{k_J}{kg} \right] \]

In time \(\Delta t \) the interface moved \(\Delta s \Rightarrow \) Volume transformed = \(A\Delta s \)

\[
\left(-k_i \frac{\partial T}{\partial x} \right) A + \left(k_s \frac{\partial T}{\partial x} \right) A - H_f \rho \left(\frac{\Delta s}{\Delta t} \right) A = 0
\]

where \(\frac{\Delta s}{\Delta t} = \frac{\partial s}{\partial t} \) = interface velocity

\[
= -k_s \frac{\partial T}{\partial x} \bigg|_s - k_l \frac{\partial T}{\partial x} \bigg|_l

= \frac{k}{H_f \rho} \left[\frac{\partial T}{\partial x} \bigg|_s - \frac{\partial T}{\partial x} \bigg|_l \right] \text{ (within factor of two)}
\]

\[
\frac{\partial T}{\partial t} = \alpha_l \nabla^2 T \quad \frac{\partial T}{\partial t} = \alpha_s \nabla^2 T \quad \frac{\partial T}{\partial t} = \alpha_m \nabla^2 T
\]

\[
\frac{\partial s}{\partial t} = \frac{k}{H_f \rho} \left[\frac{\partial T}{\partial x} \bigg|_s - \frac{\partial T}{\partial x} \bigg|_l \right]
\]

\[
T_l = T_s = T_m (m \propto H)
\]

\[
\frac{\partial s}{\partial t} = -k_s \frac{\partial T}{\partial x} \bigg|_s = -k_m \frac{\partial T}{\partial x} \bigg|_m
\]