Lecture 9:

Surface Modification of Biomaterials

Supporting notes

3.051J/20.340J Materials for Biomedical Applications, Spring 2006 Purpose: Alter surface properties to enhance performance in biological environment while <u>retaining bulk properties</u> of device

The modified zone at the surface of the device should be **as thin as possible**. Ideally < 1 nm

Specific objectives:

- 1. Clean a surface
- 2. Reduce/eliminate protein adsorption
- 3. Reduce/eliminate cell adhesion
- 4. Reduce bacterial adhesion
- 5. Reduce thrombogenicity
- 6. Promote cell attachment/adhesion
- 7. Alter transport properties
- 8. Increase lubricity
- 9. Increase hardness
- 10. Enhance corrosion/degradation resistance

Preparation of non-fouling surfaces

to prevent non-specific protein/cell or bacterial adhesion to reduce thrombogenicity

(after Y. Ikada et al., Polymers as Biomaterials, Plenum Press, NY 1984)

Figure by MIT OCW.

Surfaces should be hydrophilic or very hydrophobic. ⁴

Example of "gold standard"

Surface modification with PEO derivative.

Short-time use Ex. Drug delivery

Chemical immobilization

Long-time use

Other strategies for hydrophilic surfaces 1

Albumin coating surface

Phospholipid-mimicking surface

Hydrophobic acylchain

Serum albumin: High water solubility and stability No affinity to proteins and platelets

Other strategies for hydrophilic surfaces 2

Heparinized surface

Heparin:

Immobilized covalently and ionically Inhibitor for thrombin or platelet adhesion

Endothelial cell attachment

Fibrinolytic activity (hydrolysis of fibrin)

Plasma treatment

NR6 WT fibroblast adhesion triggered by RGD recognition

Photos removed for copyright reasons.

Biomolecule immobilization method for specific surfaces

Physical adsorption	van der Waals
	Electrostatic
	Affinity
	Adsorbed and cross-linked
Physical "entrapment"	Barrier system
	Hydrogel
	Dispersed system
Covalent attachment	Soluble polymer conjugate
	Solid surface
	Hydrogel

Biomolecules: proteins/peptides, saccharides, lipids, drugs, ligands, nucleic acids/nucleotides, (cells,) etc. 9

Chemical modification of materials

ref. Ratner, Biomaterials Science, p. 229

For covalent binding to an inert solid polymer surface, the surface **must first be chemically modified** to provide reactive groups for the subsequent immobilization step.

Major reacting groups: -NH₂

Activation of -OH

All the procedures must be carried out under anhydrous condition

Major reacting groups: -NH₂

Activation of -NH₂

Activation of -COOH

Major reacting groups: -COOH

Activation of -NH₂

Chemoselective ligation

Reactions take place between selected pairs of functional groups ¹⁴

Other chemical surface modifications

Preparation of hydrophobic and inert surfaces

Silanization

Summary:

- · Clean a surface
- Reduce/eliminate protein/cell/bacteria adsorption,
 reduce thrombogenicity

Non-fouling and bioinert surfaces

Promote biological response

Immobilization of biomolecules Short time - Physical adsorption Long time - Covalent bonding