LECTURE 8: INTRODUCTION TO INTRA- AND INTERMOLECULAR FORCES

Outline:
LAST TIME: SINGLE CELL MECHANICS ... 2
CLASSIFICATION OF INTRA- AND INTERMOLECULAR FORCES 3
SPECIFIC TYPES OF INTRA- AND INTERMOLECULAR FORCES 4
HYDROPHOBIC / HYDROPHILIC INTERACTIONS .. 5
EXAMPLES .. 6-7

 Biological: Noncovalent Interactions in Folded Protein Structures 6
 Synthetic: Self-Assembling Peptide Amphiphiles for Regenerative Medicine 7

Objectives: To explore the qualitative origins of intra- and intermolecular forces

Readings: Course Reader documents 16-19

Multimedia: Protein folding demo on Bonding and protein structure (California Lutheran University)
SINGLE CELL MECHANICS

- single cell AFM imaging
- motivation (musculoskeletal tissue, circulatory system, brain)
- experimental methods 1) localized area of the cell is deformed AFM, magnetic bead, 2) mechanical loading of an entire cell micropipette aspiration, optical trap, 3) simultaneous mechanical loading of a population of cells (shear flow, cell force monitor)

- The composite is modeled as an isotropic, elastic, continuum, incompressible (constant volume), constant surface area

Constitutive Law: stress vs. strain relationship that describes a particular material

\[
\sigma_3 = 0 \text{ (always)} = F/A_0
\]

\[
\sigma_2 = 0 \text{ (by choice)}
\]

Single macromolecule Gaussian linear elastic Hookean spring \(F = kr \) → summing over a network of random coil molecules

"Triangulated Network"

\[U = \frac{G_o}{2} \left(\lambda_1^2 + \lambda_2^3 + \lambda_3^2 - 3 \right) + C_3 \left(\lambda_1^2 + \lambda_2^3 + \lambda_3^2 - 3 \right)^3 \]

\(\lambda = \text{extension or stretch ratio} \), \(\lambda_1 = \frac{L_1}{L_0} \), \(\lambda_2 = \frac{L_2}{L_0} \), \(\lambda_3 = \frac{L_3}{L_0} \)

\(G_o = \text{shear modulus} \)

uniaxial normal stress, \(\sigma_n (N/m^2) = \frac{\partial U}{\partial \lambda_1} \)

by definition

constant volume constraint = \(\lambda_1 \lambda_2 \lambda_3 \) from definition of extension ratio & geometry

Courtesy of Annual Reviews, Inc. Used with permission.

CLASSIFICATION OF INTRA- AND INTERMOLECULAR FORCES
(within individual molecules) (between individual molecules)

-Definitions: **Interaction** (more general), **force** (push or pull), **bond** (the attraction between atoms in a molecule or crystalline structure) → all intra- and intermolecular forces are electrostatic in origin → key to life on earth (e.g. water, cell membranes, protein folding, etc.)

- strength measured relative to the thermal energy (room temperature): \(k_B T = 4.1 \times 10^{-21} \text{ J} \): "ruler" noncovalent

<table>
<thead>
<tr>
<th>I. Primary or Chemical</th>
<th>II. Secondary or Physical</th>
<th>III. "Special"</th>
</tr>
</thead>
<tbody>
<tr>
<td>• individually strong > (k_B T)</td>
<td>• individually weak (\leq k_B T)</td>
<td>• broad range of strength</td>
</tr>
<tr>
<td>• outer orbital e- shared that the discrete nature of the atom is lost</td>
<td>• no e- sharing; between two or more atoms so discrete nature of atoms preserved</td>
<td>• controversial</td>
</tr>
<tr>
<td>• quantum mechanical in origin</td>
<td>• more subtle attraction in origin between (+) and (-) charges typically lack specificity, directionality, stoichiometry</td>
<td>• not a "true" bond</td>
</tr>
<tr>
<td>• covalent → possess specificity, directionality, stoichiometry</td>
<td>• ionic (in water), polar, polarization, dispersion</td>
<td>hydrophobic, hydrophilic, polymer effects (e.g. excluded volume, entropic elasticity), electrostatic double layer</td>
</tr>
<tr>
<td>• metallic → delocalized electrons</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Biological systems and bottom-up self-assembly is based on the balance and interplay of intra- and intermolecular forces.

- Noncovalent interactions allow for dynamic systems, i.e. breaking reversible reforming bonds doesn't require much energy)/individually weak, forces are cumulative → stable in parallel.
SPECIFIC TYPES OF INTRA- AND INTERMOLECULAR FORCES

Ionic
- Coulombic attraction between oppositely charged species
- Individually strong, however greatly weakened in the presence of water (e.g. center of proteins → strong, DNA-proteins)

Polar Interactions
- Polar = asymmetric distribution of charge
 - Attractive force between an ion and a permanent dipole or two permanent dipoles where the (+) charge attracts (-) (e.g. hydrogen bonds)

- (-all 3 atoms in water can H-bond, up to 4 per molecule, important in biology because it is able to form weak interactions with so many different chemical species)

Polarization Interactions
- An ion or dipole in the vicinity of a nonpolar atom or molecule causes an instantaneous polarization and electrostatic attraction

London Dispersion
- Nonpolar-nonpolar and induced dipole - induced dipole
- Charge fluctuation, the (+) nucleus of a nonpolar atom attracts the (-) charged electron cloud of another nonpolar atom → an instantaneous induced, short lived fluctuating dipole, - takes place in all atoms / molecules,
HYDROPHOBIC ("WATER FEARING") INTERACTIONS

- attraction and association between nonpolar molecules in aqueous solution caused by their inability to form H-bonds with water so as to minimize disruption of H-bonds in water (non-directional, entropy driven since water has a more ordered structure around nonpolar molecules)

- e.g. alkanes, hydrocarbons, fluorocarbons, inert atoms

- can be long range

- Conversely hydrophilic interactions result in repulsion in order to maximize their interaction with water, amphiphile- having both hydrophilic and hydrophobic chemical constituents, solvophobic (fearing other solvents)

- → important for fouling/biocompatibility of implanted devices, protein folding

Figure by MIT OCW.

Courtesy of Michael Apel.
NONCOVALENT INTERACTIONS IN FOLDED PROTEINS

Random coil \[\rightarrow\] balance between entropic elasticity and noncovalent attractive forces

Hierarchical levels:
1) Chemical: peptide bonds
2) Primary: sequence of amino acids
3) Secondary: local chain configuration (α-helix, β-sheet), loops
4) Tertiary: additional chain folding over longer distances
5) Quaternary: globular domains
6) Modular: linear array of covalently attached domains in series

Adapted from Grosberg and Khokhlov, Giant Molecules

"denatured" biologically inactive \[\rightarrow\] "native" state biologically active

DEMO: Noncovalent interactions in proteins, chymotrypsin (digestive proteolytic enzyme, catalyzes chemical reactions to break down proteins into amino acids)
SELF-ASSEMBLING PEPTIDE AMPHIPHILES FOR REGENERATIVE MEDICINE

1) alkyl tail = hydrophobic promotes self-organization
2) cysteines used for polymerization of sulfides
3) flexible linker to give some molecular mobility
4) phosphorylated serine interacts with calcium ions and promotes mineralization
5) cell adhesion ligand RGD

Figures removed due to copyright restrictions.