Thermal properties of foams

- Closed cell foams widely used for thermal insulation
- Only materials with lower conductivity are aerogels (tend to be brittle and weak) + vacuum insulation panels
- Low thermal conductivity of foams arises from:
 - Low volume fraction of solid
 - High volume fraction of gas with low λ
 - Small cell size suppresses convection + radiation (through repeated absorption & reflection)

- Applications: buildings, refrigerated vehicles, LNG tankers
- Foams also have good thermal shock resistance since coeff. of thermal expansion of foam equal to that of the solid + modulus much lower ($E = \alpha \Delta T$; $\sigma = E \alpha \Delta T = \sigma_f$)
 - \Rightarrow used as heat shields
- Ceramic foams used as firebrick - ceramic has high T_m
 - Foam - low λ - low heat loss
 - Low heat capacity - lowers energy to heat furnace to temperature
 - Good thermal shock resistance - resists spalling
Thermal conductivity, \(\lambda \)

- steady state conduction (\(T \) constant with time)

 Fourier's law: \(q = -\lambda \frac{dT}{dx} \)

 \(q \) = heat flux [J/(m^2s)]
 \(\lambda \) = thermal conductivity [W/(mK)]
 \(\frac{dT}{dx} \) = temperature gradient

 \(= i \frac{dT}{dx} + j \frac{dT}{dy} + k \frac{dT}{dz} \)

- non-steady heat conduction (\(T \) varies with time, \(t \))

 \(\frac{dT}{dt} = \alpha \frac{\partial^2 T}{\partial x^2} \)

 \(\alpha \) = thermal diffusivity = \(\frac{\lambda}{\rho C_p} \) [m^2/s]

 \(\rho \) = density
 \(C_p \) = specific heat = heat req'd to raise temp. of unit mass by 1 K

 \(\rho C_p \) = volumetric heat capacity [J/(m^3 K)]

- values for \(\lambda \), see Table 7.1
Table 7.1 Thermal conductivities and diffusivities

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal conductivity λ (W/m K)</th>
<th>Thermal diffusivity a (m2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (solid)</td>
<td>384a</td>
<td>8.8×10^{-5} a</td>
</tr>
<tr>
<td>Aluminium (solid)</td>
<td>230a</td>
<td>8.9×10^{-5} a</td>
</tr>
<tr>
<td>Alumina (solid)</td>
<td>25.6a</td>
<td>8.2×10^{-6} a</td>
</tr>
<tr>
<td>Glass (solid)</td>
<td>1.1a</td>
<td>4.5×10^{-7} a</td>
</tr>
<tr>
<td>Polyethylene (solid)</td>
<td>0.35a</td>
<td>1.7×10^{-7} a</td>
</tr>
<tr>
<td>Polyurethane (solid)</td>
<td>0.25c</td>
<td></td>
</tr>
<tr>
<td>Polystyrene (solid)</td>
<td>0.15a</td>
<td>1.0×10^{-7} a</td>
</tr>
<tr>
<td>Air</td>
<td>0.025a</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0.016a</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane (CCl$_3$F)</td>
<td>0.008a</td>
<td></td>
</tr>
<tr>
<td>Oak ($\rho' / \rho_k = 0.40$)</td>
<td>0.150a</td>
<td></td>
</tr>
<tr>
<td>White pine ($\rho' / \rho_k = 0.34$)</td>
<td>0.112a</td>
<td></td>
</tr>
<tr>
<td>Balsa ($\rho' / \rho_k = 0.09$)</td>
<td>0.055a</td>
<td></td>
</tr>
<tr>
<td>Cork ($\rho' / \rho_k = 0.14$)</td>
<td>0.045a</td>
<td></td>
</tr>
<tr>
<td>Polystyrene foam ($\rho' / \rho_k = 0.025$)</td>
<td>0.040b</td>
<td>1.1×10^{-6} b</td>
</tr>
<tr>
<td>Polyurethane foam ($\rho' / \rho_k = 0.02$)</td>
<td>0.025b</td>
<td>9.0×10^{-7} b</td>
</tr>
<tr>
<td>Polystyrene foam ($\rho' / \rho_k = 0.029$–0.057)</td>
<td>0.029–0.035cd</td>
<td></td>
</tr>
<tr>
<td>Polyisocyanurate foam, (CFC-11) (rho' = 32 kg/m3)</td>
<td>0.020d</td>
<td></td>
</tr>
<tr>
<td>Phenolic foam, (CFC-11, CFC-113) (rho' = 48 kg/m3)</td>
<td>0.017d</td>
<td></td>
</tr>
<tr>
<td>Glass foam ($\rho' / \rho_k = 0.05$)</td>
<td>0.050a</td>
<td></td>
</tr>
<tr>
<td>Glass wool ($\rho' / \rho_k = 0.01$)</td>
<td>0.042d</td>
<td></td>
</tr>
<tr>
<td>Mineral fibre ($\rho' / \rho_k = 4.8–32$ kg/m3)</td>
<td>0.046cd</td>
<td></td>
</tr>
</tbody>
</table>

All values for room temperature.

References

Data for thermal conductivity and thermal diffusivity
thermal diffusivity, \(a\)

- materials with a high value of \(a\) rapidly adjust their temp. to that of surroundings, because they conduct heat rapidly in comparison to their volumetric heat capacity; do not require much energy to reach thermal equilibrium

- e.g. Cu \(a = 112 \times 10^{-6} \text{ m}^2/\text{s}\)
- nylon \(a = 0.09 \times 10^{-6} \text{ m}^2/\text{s}\)
- wood \(a = 0.082 \times 10^{-6} \text{ m}^2/\text{s}\)

Thermal conductivity of a foam, \(\lambda^*\)

\(\lambda^*\) - contributions from:
- conduction through solid, \(\lambda_s^*\)
- " " gas, \(\lambda_g^*\)
- convection within cells, \(\lambda_c^*\)
- radiation through cell walls + across voids, \(\lambda_r^*\)

\[
\lambda^* = \lambda_s^* + \lambda_g^* + \lambda_c^* + \lambda_r^*
\]

- conduction through solid: \(\lambda_s^* = \eta \lambda_s (\rho_s^{\star}/\rho_s)\) \(\eta = \text{efficiency factor} \sim 2/3\)
- conduction through gas: \(\lambda_g^* = \lambda_g (1 - \rho_s^{\star}/\rho_s)\)
For example, 2.5% dense closed-cell polystyrene foam $\lambda^* = 0.040 \text{ W/mK}$

$\lambda_s = 0.15 \text{ W/mK} \quad \lambda_g = 0.025 \text{ W/mK (air)}$

$\lambda^*_s + \lambda^*_g = \frac{2}{3} (0.15) (0.025) + (0.025) (0.975) = 0.043 + 0.024 = 0.027 \text{ W/mK}$

- Most of conductivity comes from conduction through gas
- Foams for insulation blown with low λ_g gases
- Problem with aging - low λ_g gases diffuse out of foam over time, air diff. λ_s^*

Convection within the cell

- Hot gas rises and falls due to density changes with temperature
- Density changes - buoyancy forces
- Also have viscous forces from drag of gas as it moves past cell wall

Convection important if Rayleigh number $\gtrsim 1000

$$Ra = \frac{\rho g \beta \Delta T_c l^3}{\mu a}$$

- ρ = density of gas
- g = grav. accn
- β = volume expansion
- ΔT_c = temp. diff. across cell
- l = cell size
- μ = dynamic viscosity of gas
- $\mu = \text{gas} = \frac{\mu}{\text{air}}$ (viscosity)
- a = thermal diffusivity
Convection

For \(Re = 1000 \):
- \(\text{Air} \)
- \(p = P_{atm} \)
- \(T = \text{room temp} \)
- \(\beta = \frac{1}{300} \, (\text{oK}^{-1}) \)
- \(\Delta T_c = 1 \, \text{oK} \)
- \(\mu_{av} = 2 \times 10^{-5} \, \text{Pa} \cdot \text{s} \)
- \(\rho_{av} = 1.2 \, \text{kg/m}^3 \)
- \(a_{av} = 2.0 \times 10^{-5} \, \text{m}^2/\text{s} \)

\[\Rightarrow l = 20 \, \text{mm} \]

- Convection important if cell size > 20 mm
- Most foams: cell size < 1 mm \(\Rightarrow \) convection negligible

Radiation

- Heat flux passing by radiation, \(q^\circ \), from a surface at temperature \(T_i \)
 to one at a lower temp. \(T_o \), with a vacuum between them, is:

\[q^\circ = \beta_i \sigma (T_i^4 - T_o^4) \quad \text{Stefan's law} \]

\(\sigma = \text{Stefan's constant} = 5.67 \times 10^{-8} \, \text{W/m}^2\text{K}^4 \)

\(\beta_i = \text{constant} (<1) \) describing emissivity of the surface

(\(\beta_i \) describes how much of the radiant flux emitted per unit area of sample relative to a black body radiator at same temp. & conditions; black body absorbs all energy; black body emissivity = 1)
- If put foam between two surfaces, heat flux is reduced, since radiation is absorbed by the solid + reflected by cell walls.

- Attenuation: \(q_r = q_i^* \exp(-k^* t^*) \)

 \(k^* = \) extinction coeff. for foam

 \(t^* = \) thickness of foam

- For optically thin walls + struts (\(t < 10 \mu m \)) (transparent to radiation):

 \(k^* = \left(\frac{\rho_i}{\rho_s} \right) k_s \)

- Heat flux by radiation then:

 \(q_r = \lambda_i^* \frac{dT}{dx} \)

 \(q_r = \rho_i \sigma (T_i^4 - T_o^4) \exp[-(\rho_i^* \rho_s) k_s t^*] = \lambda_i^* \frac{dT}{dx} \)

- Obtain \(\lambda_i^* \) using some approximations:
approximations:

\[\frac{dT}{dx} \approx \frac{T_1 - T_0}{t^*} = \frac{\Delta T}{t^*} \]

\[T_1^* - T_0^* = 4 \Delta T \frac{T^3}{t^*} \quad T^* = \left(\frac{T_1 + T_0}{2} \right) \]

\[q_v = \beta_1 \sigma 4 \Delta T \frac{T^3}{t^*} \exp \left[-\left(\frac{\rho}{\rho_s} \right) k_s t^* \right] = \lambda_r^* \frac{\Delta T}{t^*} \]

\[\lambda_r^* = 4 \beta_1 \sigma \frac{T^3}{t^*} \exp \left[-\left(\frac{\rho}{\rho_s} \right) k_s t^* \right] \]

as \(\rho \to \rho_s \) ↓, \(\lambda_r^* \) ↑

Thermal conductivity

- relative contributions of \(\lambda_s^* \), \(\lambda_j^* \), \(\lambda_r^* \) shown in Fig 7.1
 - largest contribution \(\lambda_j^* \)

- \(\lambda^* \) plotted against relative density Fig 7.2
 - minimum @ between \(\rho_s \) of 0.03 & 0.07
 - at which point \(\lambda^* \) only slightly larger than \(\lambda_j^* \)
 - at low \(\rho_s \), \(\lambda^* \) increases - increasing transparency to radiation (also, walls may rupture)

- tradeoff: as \(\rho_s \) ↓, \(\lambda_s^* \) ↓ but \(\lambda_r^* \) ↑
Thermal Conductivity

Cond. Vs. Relative Density

Cond. vs. Cell Size

\(\lambda^* \) plotted against cell size Fig 7.3

- \(\lambda^* \) increases with cell size
- radiation reflected less often

Note: aerogels
 - pore size < 100 nm
 - mean free path of air at ambient pressure = 68 nm
 ➔ avg. distance molecules move before collision with another molecule
 - aerogels: pore size < mean free path of air - reduces conduction through gas.

Specific heat \(C_p \)

- specific heat = energy req'd to raise temp. of unit mass by unit temp

\[C_p^* = C_{ps} \quad [J/\text{kg} \cdot \text{K}] \]

Thermal expansion coefficient

\(\alpha^* = \alpha_s \) (consider foam as framework)

(but if closed-cell foam cooled dramatically - gas can freeze, collapsing the cells; or if heated - gas expands, increasing the internal pressure + strain)
Thermal shock resistance

- If material subjected to sudden change in surface temp. induces thermal stresses at surface + cracking + spalling.
- Consider material at T_1 dropped in b water at T_2 ($T_1 > T_2$)
- Surface temp. drops to T_2, contracting surface layers
- Thermal strain $\varepsilon_T = \alpha \Delta T$
- If surface bonded to underlying block of material - constrained to original dimensions

$$\sigma = \frac{E \alpha \Delta T}{1 - \nu} \quad \text{in the surface}$$

- Cracking/spalling when $\sigma = \sigma_f$
- $\Delta T_c = \frac{\sigma_f (1 - \nu)}{E \alpha}$ = critical ΔT to just cause cracking

 for foam: (open cells)
 $$\Delta T_{c*} = 0.2 \sigma_{fS} \left(\rho S \alpha S \right)^{3/2} (1 - \nu) = 0.2 \sigma_{fS} \left(\frac{\rho S}{\rho_*} \right)^{1/2} \frac{\nu S}{E_s} \Delta T_{cS}$$
 $$\Delta T_{c*} \propto \text{as foam density } \downarrow \quad \Delta T_{c*} \uparrow \quad \text{firebrick - porous ceramic}$$
Case study: optimization of foam density for thermal insulation

- There is an optimal foam density for a given thermal insulation problem.
- Already saw A^* has a minimum as a $f(\rho^*/\rho_s)$
- Typically, have a constraint on the foam thickness, $t^* = \text{constant}$
 $\lambda^* = \frac{2}{3} (\rho^*/\rho_s) \lambda_s + (1 - \rho^*/\rho_s) \lambda_f^* + 4 \beta_1 \sigma T^3 t^* \exp[-K_s (\rho^*/\rho_s) t^*]$
- What is optimum ρ^*/ρ_s for a given t^*?
 \[
 \frac{d\lambda^*}{d(\rho^*/\rho_s)} = 0 \Rightarrow (\rho^*/\rho_s)_{\text{opt}} = \frac{1}{K_s t^*} \ln \left[\frac{4 K_s \beta_1 \sigma T^3 t^*}{\frac{2}{3} \lambda_s - \lambda_f^*} \right]
 \]

- As given thickness t^* increases, $(\rho^*/\rho_s)_{\text{opt}}$ decreases.
- As T increases, $(\rho^*/\rho_s)_{\text{opt}}$ increases.

 e.g. coffee cup $t^* = 3\text{mm}$ $(\rho^*/\rho_s)_{\text{opt}} = 0.08$ (see PP slide Table 7.3 for data used in calculation)
 refrigerator $t^* = 50\text{mm}$ $(\rho^*/\rho_s)_{\text{opt}} = 0.02$
Case Study:
Optimization of Relative Density

Case Study:
Optimum Relative Density

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinction coefficient of solid polymer, K_s</td>
<td>$5.67 \times 10^4 \text{ m}^{-1}$</td>
</tr>
<tr>
<td>Emissivity factor, β_1</td>
<td>0.5</td>
</tr>
<tr>
<td>Conductivity of solid polymer, λ_s</td>
<td>0.22 W/m K</td>
</tr>
<tr>
<td>Conductivity of gas, λ_g</td>
<td>0.02 W/m K</td>
</tr>
<tr>
<td>Mean temperature, T</td>
<td>300°K</td>
</tr>
<tr>
<td>Stefan’s constant, σ</td>
<td>$5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$</td>
</tr>
</tbody>
</table>

Case study: insulation for refrigerators

- insulation reduces energy cost, but has a cost itself
- total cost = cost of insulation + cost of energy lost by heat transfer through walls
- objective function: minimize total cost
- given: \(x = \) thickness of insulation
 \(\Delta T = \) temp. diff. across insulation
 \(t_e = \) design life of refrigerator
 \(C_m = \) cost of insulation/mass
 \(C_E = \) " " energy/joule
 \(C_T = \) total cost/area

\[
C_T = x \rho^* C_m + \lambda \frac{\Delta T}{x} t_e C_E
\]

(heat flux \(q = \lambda \frac{\Delta T}{x} \frac{W}{m^2}\))

Define \(M_1 = \frac{1}{\rho^* C_m} \quad M_2 = \frac{1}{\lambda} \)

\[
\frac{C_T}{x} = \frac{1}{M_1} \left[\frac{\Delta T}{x^2} t_e C_E \right] \frac{1}{M_2}
\]
two terms are equal when:

\[M_2 = \left[\frac{\Delta T}{x^2} t_e C_e \right] M_1 \]

\(x \) coupling constant

- family of parallel straight lines of constant value \(\frac{\Delta T}{x^2} t_e C_e \)

- Fig 13.11 \(\Delta T = 20^\circ \quad x = 10\text{mm} \quad C_e = \# 0.01/\text{m}5 \)

- two lines for \(t_e = 10 \text{ years} \) & \(t_e = 1 \text{ month} \)

 (note error in book \(t_e = 10\text{yrs} \) line should be moved over)

also plotted a set of curved contours - plots of \(C_l/x \)

- as move up to right of plot, the value of \(C_l/x \) ↓

- for \(t_e = 10 \text{ years} \) = phenolic foam \(\rho^* = 0.035 \text{ Mg}/\text{m}^3 \)

 \(t_e = 1 \text{ month} \) = EPS \(\rho^* = 0.02 \text{ Mg}/\text{m}^3 \)

 PP \(\rho^* = 0.02 \text{ Mg}/\text{m}^3 \)
Case Study: Insulation for Refrigerators
