Welcome to 3.091

Lecture 10
September 30, 2009

Hybridized & Molecular Orbitals; Paramagnetism
3.091 Test #1
Wednesday, October 7, 2009
Room Assignments

A – Ha: 10-250
He - Sm: 26-100
So - ∞: 4-270
Increasing Electronegativity, χ

- **s Block**
- **p Block**
- **d Block**
- **f Block**

Image by MIT OpenCourseWare.
\[
\% \text{ ionic character} = \left\{ 1 - \exp\left(-\frac{1}{4} (\Delta X)^2 \right) \right\} \times 100
\]

% Ionic Character of a Single Chemical Bond

<table>
<thead>
<tr>
<th>Difference in Electronegativity</th>
<th>%IC (by L. Pauling)</th>
<th>%IC (by Hannay & Smyth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>0.2</td>
<td>1.0</td>
<td>3.3</td>
</tr>
<tr>
<td>0.3</td>
<td>2.2</td>
<td>5.1</td>
</tr>
<tr>
<td>0.4</td>
<td>3.9</td>
<td>7.0</td>
</tr>
<tr>
<td>0.5</td>
<td>6.1</td>
<td>8.9</td>
</tr>
<tr>
<td>0.6</td>
<td>8.6</td>
<td>11.0</td>
</tr>
<tr>
<td>0.7</td>
<td>12.0</td>
<td>13.0</td>
</tr>
<tr>
<td>0.8</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>0.9</td>
<td>18.0</td>
<td>17.0</td>
</tr>
<tr>
<td>1.0</td>
<td>22.0</td>
<td>20.0</td>
</tr>
<tr>
<td>1.1</td>
<td>26.0</td>
<td>22.0</td>
</tr>
<tr>
<td>1.2</td>
<td>30.0</td>
<td>24.0</td>
</tr>
<tr>
<td>1.3</td>
<td>34.0</td>
<td>27.0</td>
</tr>
<tr>
<td>1.4</td>
<td>39.0</td>
<td>29.0</td>
</tr>
<tr>
<td>1.5</td>
<td>43.0</td>
<td>32.0</td>
</tr>
<tr>
<td>1.6</td>
<td>47.0</td>
<td>35.0</td>
</tr>
<tr>
<td>1.7</td>
<td>51.0</td>
<td>37.0</td>
</tr>
<tr>
<td>1.8</td>
<td>56.0</td>
<td>40.0</td>
</tr>
<tr>
<td>1.9</td>
<td>59.0</td>
<td>43.0</td>
</tr>
<tr>
<td>2.0</td>
<td>63.0</td>
<td>46.0</td>
</tr>
<tr>
<td>2.1</td>
<td>67.0</td>
<td>49.0</td>
</tr>
<tr>
<td>2.2</td>
<td>70.0</td>
<td>52.0</td>
</tr>
<tr>
<td>2.3</td>
<td>73.0</td>
<td>55.0</td>
</tr>
<tr>
<td>2.4</td>
<td>76.0</td>
<td>59.0</td>
</tr>
<tr>
<td>2.5</td>
<td>79.0</td>
<td>62.0</td>
</tr>
<tr>
<td>2.6</td>
<td>82.0</td>
<td>65.0</td>
</tr>
<tr>
<td>2.7</td>
<td>84.0</td>
<td>69.0</td>
</tr>
<tr>
<td>2.8</td>
<td>86.0</td>
<td>72.0</td>
</tr>
<tr>
<td>2.9</td>
<td>88.0</td>
<td>76.0</td>
</tr>
<tr>
<td>3.0</td>
<td>89.0</td>
<td>80.0</td>
</tr>
<tr>
<td>3.1</td>
<td>91.0</td>
<td>83.0</td>
</tr>
<tr>
<td>3.2</td>
<td>92.0</td>
<td>87.0</td>
</tr>
</tbody>
</table>
Group Classifications

Atomic Number

Oxidation States

Symbol

Electronic Configuration

Name

Atomic Weight

Melting Point

Boiling Point

Density

Electronegativity

First Ionization Potential
Electron-Pair Bond

H

1

1s

H

1

1s

H₂
Molecular Orbital ——— Bonding
Molecular Orbital ———— Antibonding
<table>
<thead>
<tr>
<th></th>
<th>He (AO)</th>
<th>He$_2^+$ (MOs)</th>
<th>He$^+$ (AO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td>σ_{1s}^*</td>
<td>σ_{1s}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image by MIT OpenCourseWare.
$2p_{za}$ and $2p_{zb}$ combine to form σ_{2p}^* antibonding and σ_{2p} bonding orbitals.
Bonding

Atomic orbitals

Molecular orbital

Image by MIT OpenCourseWare.
\(\pi_{2p_x}^* \) Antibonding

\(\pi_{2p_x} \) Bonding
Bonding

Atomic orbitals

1. np_x + np_x
2. np_y + np_y

Molecular orbitals

1. πnp_x
2. πnp_y
e.g. N$_2$, B$_2$, C$_2$
\[\text{N}_2 \]

6 bonding electrons

\[\Rightarrow \text{triple bond} \]

\[\text{N} \equiv \text{N} \]

946 kJ/mol

Image by MIT OpenCourseWare.
e.g. O_2 & F_2
\(\sigma_{2p}^* \)
\(\pi_x^* \) \(\pi_y^* \)
\(\sigma_{2p} \)
\(\pi_x \) \(\pi_y \)
O_2

6 bonding electrons
2 anti bonding electrons
\Rightarrow double bond

$0 = 0$

498 kJ/mol
F_2
6 bonding electrons
4 anti bonding electrons
\Rightarrow single bond
$F-F$
160 kJ/mol
Paramagnetism

(a) No magnetic field

(b) Magnetic field turned on

Unpaired electrons
paramagnetism in liquid oxygen

O₂

6 bonding electrons
2 anti bonding electrons
⇒ double bond

= 0
498 kJ/mol

Image by MIT OpenCourseWare.

Three sp² Hybrid Orbitals

An sp² Hybrid Orbital

Hybridization

An sp²-Hybridized Atom

Image by MIT OpenCourseWare.
(a) C_2H_4 sigma-bonded framework

(b) C_2H_4 pi bonding

Image by MIT OpenCourseWare.
Extremes in electronegativity

NaI: $\Delta \chi = 1.73$
CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but*…
when the concentration nears 50%
(equal numbers of donors & acceptors)

\bullet^* electron transfer occurs \bullet^* !

\[
\text{Cs} \rightarrow \text{Cs}^+ + e^-
\]

\[
\text{Au} + e \rightarrow \text{Au}^-
\]
Extremes in electronegativity

NaI: $\Delta \chi = 1.73$
CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but…* when the concentration nears 50% (equal numbers of donors & acceptors)

- ⚡ electron transfer occurs ⚡

metallic melt turns into molten salt!!

- 🌟 clear, colorless liquid
- ⛔️ big drop in electrical conductivity
- 🚀 shift from electronic to ionic conduction
Specific electrical conductivity of liquid Cs–Au alloys as a function of concentration (Hoshino et al. 1975)

![Graph showing the electrical conductivity of Cs–Au alloys at 600°C](Image by MIT OpenCourseWare)
Extremes in electronegativity

NaI: $\Delta \chi = 1.73$

CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but*...

when the concentration nears 50% (equal numbers of donors & acceptors)

- electron transfer occurs!

metallic melt turns into molten salt!!
- clear, colorless liquid
- big drop in electrical conductivity
- shift from electronic to ionic conduction
- cesium auride

Abrerg!
Extremes in electronegativity

NaI: $\Delta \chi = 1.73$

CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, but... when the concentration nears 50%

(equal numbers of donors & acceptors)

- electron transfer occurs!

metallic melt turns into molten salt!!

- clear, colorless liquid
- big drop in electrical conductivity
- shift from electronic to ionic conduction
- cesium auride