Welcome to 3.091

Lecture 19
October 23, 2009
Point & Line Defects
Taxonomy of Defects:
Classify by Dimensionality

0-dimensional: point defects
1-dimensional: line defects
2-dimensional: interfacial defects
3-dimensional: bulk defects
Point Defects
- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity
- occupies normal lattice site
- dopant 😊, e.g., P in Si; B in C\textsubscript{diamond}
- alloying element 😊, e.g., Mg in Al; or Ni in Au
- contaminant 😣, Li+ in NaCl

2. Interstitial Impurity
- occupies position between lattice sites
- alloying element 😊, e.g., C in Fe; or H in LaNi\textsubscript{5}
- contaminant 😣, H in Fe
Point Defects

- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity

- occupies normal lattice site
- dopant ☺, e.g., P in Si; B in C\textsubscript(diamond)
- alloying element ☺, e.g., Mg in Al; or Ni in Au
- contaminant ☹, Li+ in NaCl

2. Interstitial Impurity

- occupies position between lattice sites
- alloying element ☻, e.g., C in Fe; or H in LaNi\textsubscript{5}
- contaminant ☼, H in Fe
Photo of the [Hope Diamond] removed due to copyright restrictions.
Point Defects
- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity
- occupies normal lattice site
- dopant 😊, e.g., P in Si; B in C_{diamond}
- alloying element 😊, e.g., Mg in Al; or Ni in Au
- contaminant 😱, Li^+ in NaCl

2. Interstitial Impurity
- occupies position between lattice sites
- alloying element 😊, e.g., C in Fe; or H in LaNi_5
- contaminant 😡, H in Fe
Point Defects
- localized disruption in regularity of the lattice
- on and between lattice sites

1. Substitutional Impurity
- occupies normal lattice site
- dopant 😊, e.g., P in Si; B in C\textsubscript{(diamond)}
- alloying element 😊, e.g., Mg in Al; or Ni in Au
- contaminant 😞, Li+ in NaCl

2. Interstitial Impurity
- occupies position between lattice sites
- alloying element 😊, e.g., C in Fe; or H in LaNi\textsubscript{5}
- contaminant 😞, H in Fe
3. Vacancy
- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions
Image by [Cdang](https://en.wikipedia.org/wiki/Cdang) on Wikipedia.
3. Vacancy
- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions
Monovacancies and divacancies in copper
Reanalysis of experimental data

G. Neumanna, V. Töllena, C. Tuijnbb,*

*Institut für Physikalische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
bDepartment of Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
Received 31 May 1999

Abstract

The vacancy concentrations \(c_v \) in copper measured by means of the absolute technique (Hehenkamp et al., Phys. Rev. B 45 (1992) 1998) and those derived from positron lifetime studies (Kluin, Philos. Mag A 65 (1992) 1263) are reanalysed. Taking into account the results of quenching and annealing investigations the best fit to the temperature function of \(c_v \) is described by \(H_{1v}^S = 1.03 \text{ eV} \) and \(S_{1v}^0/k = 1.1 \) for the monovacancy formation enthalpy and entropy and a divacancy binding enthalpy and entropy of \(H_{2v}^S = -0.23 \text{ eV} \) (attractive interaction) and \(S_{2v}^0/k = 2.8 \), respectively. Accordingly, the divacancy concentration amounts to \(1.5 \times 10^{-4} \) at the melting temperature. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Vacancies; Monovacancies; Divacancies; Copper

Point Defects in Ionic Crystals
- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection
- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection
- formation of an ion vacancy and an ion interstitial

3. F-Center
- formation of an ion vacancy and bound electron
Image by Leyo on Wikipedia.
Point Defects in Ionic Crystals

- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection
- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection
- formation of an ion vacancy and an ion interstitial

3. F-Center
- formation of an ion vacancy and bound electron
Point Defects in Ionic Crystals
- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection
- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection
- formation of an ion vacancy and an ion interstitial

3. F-Center
- formation of an ion vacancy and bound electron
Modeling dislocations in a soap bubble raft (Bragg and Nye)