2009 Test #1, Problem #1

Uranium metal can be produced by the reaction of uranium tetrafluoride (UF₄) with magnesium (Mg) in a sealed reactor heated to 700°C. The by-product is magnesium fluoride (MgF₂). To ensure that all the magnesium is consumed in the reaction, the reactor is charged with excess UF₄, specifically 10% more than the stoichiometric requirement of the reaction. To produce 222 kg of U, how much UF₄ must be introduced into the reactor? Assume complete conversion of Mg. Express your answer in kg.

\[\text{UF}_4 + 2 \text{Mg} \rightarrow \text{U} + 2 \text{MgF}_2 \]

\[222 \text{ kg U} = \frac{222 \times 10^3 \text{ g}}{238 \text{ g/mol}} = 933 \text{ mol U} \]

Stoichiometry of rxn dictated 1 mol UF₄ needed to make 1 mol U.

To provide UF₄ at 10% excess required

\[1.1 \times 933 \text{ mol} = 1026 \text{ mol} \]

Molecular mass of UF₄ = 238 + 4 \times 19 = 314 g

Mass of UF₄ needed is

\[\frac{1026 \times 314}{1000} = 322 \text{ kg} \]

2009 Test #1, Problem #2

(a) In box notation, give the complete electron configuration of each of the following gas-phase species:

(i) Ca²⁻: \[\text{[Ar]} 4s^2 \text{3d}^2 \]

(ii) Mg⁴⁺: \[\text{[He]} 2s^2 2p^6 \]

(b) Give the chemical identities of the species with these ground-state electron configurations:

(i) A neutral atom with [Xe]⁴⁵⁵d¹⁰⁶s²⁶p¹

(ii) An atom with net charge 4⁺ and [Ar]³d³

(c) Write the quantum numbers \((n, l, m, s) \) of one of the 3d and one of the 4s electrons in iron (Fe).

\((3, 2, m, s) \) where \(m = ±2, ±1, 0; s = ±\frac{1}{2} \)

\((4, 0, 0, s) \) where \(s = ±\frac{1}{2} \)
2009 Test #1, Problem #4

For a given cation, C, and anion, A, show the following four energy states on the same energy-level diagram: (1) ions at infinite separation; (2) ion pair CA; (3) ion line CACACA….; (4) crystalline solid of CA. Assume that the comparison is based upon identical numbers of ions in all four states. The diagram need not be drawn to scale; however, you must convey relative values of the different energy states.

\[
\begin{array}{cccc}
0 & \quad \quad \quad \quad \quad \quad (1) \\
E & \quad \quad \quad \quad \quad \quad (2) \\
1.38 \epsilon & \quad \quad \quad \quad \quad \quad (3) \\
\mu > 1.38 \epsilon & \quad \quad \quad \quad \quad \quad (4)
\end{array}
\]
Atoms of ionized helium gas (He+) are struck by electrons in a gas discharge tube operating with the potential difference between the electrodes set at 8.88 V. The emission spectrum includes the line associated with the transition from n = 3 to n = 2. Calculate the minimum value of the de Broglie wavelength of scattered electrons that have collided with He+ and generated this line in the emission spectrum.

\[\Delta E = KE \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = 13.6 \left(\frac{2}{3} \right)^2 \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = 7.56 \text{eV} \]

The amount of \(qV = (e)(8.88 \text{ V}) = 8.88 \text{eV} \) after excitation of \(e^- \)s within He+, ballistic \(e^- \)s are scattered with residual K.E.

\[8.88 - 7.56 = 1.32 \text{eV} \]

\[\Rightarrow \text{de Broglie wavelength is } \lambda = \frac{h}{p} = \frac{h}{mv} \]

\[KE = \frac{1}{2}mv^2 = \frac{p^2}{2m} = \frac{h^2}{2m}\lambda^2 \]

\[\lambda = \frac{h}{(2mKE)^{1/2}} \]

\[= \frac{6.6 \times 10^{-34}}{(2 \times 9.11 \times 10^{-31} \times 1.32 \times 1.6 \times 10^{-9})^{1/2}} \]

\[= 1.06 \times 10^{-9} \text{m} \]
2009 Test #2, Problem #2

(a) You discover that someone has been using your x-ray generator and has changed the target/anode.
To determine the chemical identity of the new target, you go ahead and operate the x-ray generator
and find the wavelength, \(\lambda \), of the \(K_\alpha \) peak to be 0.250 Å. What element is the target made of?

\[
\frac{1}{\lambda^2} = \frac{3}{4} R (Z - 1)^2 \Rightarrow Z = 1 + \left(\frac{4}{3 \lambda R} \right)^{1/2}
\]

\[
\Rightarrow \quad Z = 1 + \left(\frac{4}{3 \times 2.50 \times 10^{-1} \times 1.1 \times 10^{-7}} \right)^{1/2} = 23
\]

The element is \(\text{V} \) (vanadium).

(b) Hilary Sheldon conducts an experiment with her x-ray diffractometer. A specimen of tantalum (Ta)
is exposed to a beam of monochromatic x-rays of wavelength set by the \(K_\alpha \) line of titanium (Ti).
Calculate the value of the smallest Bragg angle, \(\theta_{0kl} \), at which Hilary can expect to observe
reflections from the Ta specimen.

DATA: \(\lambda_{K_\alpha} \) of Ti = 2.75 Å; lattice constant of Ta, \(a = 3.31 \) Å

\[
\lambda = 2d \sin \theta \quad \text{so smallest } \theta \text{ is associated with the largest } d \text{ spacing}
\]

Ta is BCC :: \(h + k + l \) even :: largest (h k l)
is (011) \(\Rightarrow \theta = \sin^{-1} \left(\frac{\lambda}{2d} \right) \quad \text{where } d = \frac{a}{(h^2 + k^2 + l^2)^{1/2}}
\]

\[
= \sin^{-1} \left(\frac{2.75}{2 \times 3.31} \right) = \frac{3.31}{(0 + 1 + 1)^{1/2}} = 36^\circ
\]

(c) Sketch the emission spectrum (intensity versus wavelength) of an x-ray target that has been
bombarded with photons instead of with electrons. Assume that the incident photons have more than
enough energy to dislodge \(K \)-shell electrons in the target. On your spectrum label the features
associated with \(K_\alpha \) radiation, \(K_{\beta} \) radiation, and \(L_\alpha \) radiation.

\[\text{with photons, expect to see characteristic lines but NO BREMSSTRAHLUNG interaction between photons & atoms of target caused no photon deflection} \]

\[
\begin{array}{c}
\text{intensity} \\
\hline
\text{energy} \quad K_\alpha \\
\hline
\end{array}
\]

\[\text{and} \]

\[
\begin{array}{c}
\text{intensity} \\
\hline
\text{energy} \quad K_{\beta} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{intensity} \\
\hline
\text{energy} \quad L_\alpha \\
\hline
\end{array}
\]

\[\Rightarrow \text{A} \]