Compressive load in tapered circular bar, with temperature change

Geometrical constraint: no overall deformation:

\[eq1 := \delta = 0 \]

Deformation is sum of incremental deformations; strain is not constant:

\[\delta := \int_{0}^{L} \varepsilon(x) \, dx \]

Strain is sum of mechanical and thermal components:

\[\varepsilon(x) := \frac{\sigma(x)}{E} + \alpha \Delta T \]

Stress is load (constant over \(x \)) divided by \(A \) (not constant):

\[\sigma(x) := \frac{P}{A(x)} \]

Variation of \(A(x) \) with diameter:

\[A(x) := \frac{\pi d(x)^2}{4} \]

Linear variation of diameter with distance \(x \):

\[d(x) := d[1] - (d[1] - d[2]) \times \left(\frac{x}{L} \right) \]

Everthing now known; solve \(eq1 \) for \(P \):

\[P = -\frac{1}{4} \alpha \Delta T E d_2 d_1 \]
3.11 Mechanics of Materials
Fall 1999

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.