Problem 1

\[dE = TdS - pdV + Fdl + \mu dN \]
\[E = TS - pV + Fl + \mu N \]

But we are told that we are working under a vacuum so \(p = 0 \).

(a) What is the characteristic potential (\(\phi \))?

Our controlling variables are \(T, F, N \) so

\[\phi = E - TS - Fl \]

or

\[d\phi = -SdT - ldF + \mu dN \]

Or in terms of a Legendre transform of the entropy:

\[-\beta \phi = \frac{S}{k} - \beta E + \beta Fl \]

(b) What is the partition function (\(\Lambda \)) for this ensemble?

\[\Lambda = \sum_j \exp \left[-\beta E_j + \beta Fl_j \right] \]

and

\[-\beta \phi = \ln \Lambda \quad \text{or} \quad \phi = -kT \ln \Lambda \]

(c) Write the thermodynamic variables \(l, S, \mu \) and \(E \) as a function of the partition function.

We can start with the equations of state we get from \(\phi \)

\[l = -\left(\frac{\partial \phi}{\partial F} \right)_{T,N} = kT \left(\frac{\partial \ln \Lambda}{\partial F} \right)_{T,N} \]
\[S = -\left(\frac{\partial \phi}{\partial T} \right)_{F,N} = k \ln \Lambda + kT \ln \left(\frac{\partial \ln \Lambda}{\partial T} \right)_{F,N} \]
\[\mu = \left(\frac{\partial \phi}{\partial N} \right)_{T,F} = -kT \left(\frac{\partial \ln \Lambda}{\partial N} \right)_{T,F} \]

and for \(E \) we can do the following

\[E = \phi + TS + Fl \]
\[E = -kT \ln \Lambda + kT \ln \Lambda + kT^2 \left(\frac{\partial \ln \Lambda}{\partial T} \right)_{F,N} + kTF \left(\frac{\partial \ln \Lambda}{\partial F} \right)_{T,N} \]
\[E = kT^2 \left(\frac{\partial \ln \Lambda}{\partial T} \right)_{F,N} + FkT \left(\frac{\partial \ln \Lambda}{\partial F} \right)_{T,N} \]
Problem 2

(a) What is \(\frac{V^2 - \bar{V}^2}{\bar{V}^2} \) at constant \(T, P, N \)?

We are in the isothermal-isobaric ensemble and the partition function is

\[
\Delta = \sum_j \exp \left[-\frac{E_j}{kT} \right] \exp \left[-\frac{pV_j}{kT} \right]
\]

Follow the three step procedure:

Step 1: Multiply both sides by the partition function

\[
\Delta \bar{V} = \sum_j V_j \exp \left[-\frac{E_j}{kT} \right] \exp \left[-\frac{pV_j}{kT} \right]
\]

Step 2: Get derivative with respect to mechanical variable’s conjugate.

\[
\Delta \frac{\partial \bar{V}}{\partial p} + \bar{V} \frac{\partial \Delta}{\partial p} = \frac{\partial}{\partial p} \left(\sum_j V_j \exp \left[-\frac{E_j}{kT} \right] \exp \left[-\frac{pV_j}{kT} \right] \right)
\]

\[
\Delta \frac{\partial \bar{V}}{\partial p} + \bar{V} \left\{ \sum_j \left(-\frac{V_j}{kT} \right) \exp \left[-\frac{E_j}{kT} \right] \exp \left[-\frac{pV_j}{kT} \right] \right\} = \sum_j \left(-\frac{V_j^2}{kT} \right) \exp \left[-\frac{E_j}{kT} \right] \exp \left[-\frac{pV_j}{kT} \right]
\]

Step 3: Divide through by the partition function

\[
\frac{\partial \bar{V}}{\partial p} + \left(\frac{\bar{V}}{kT} \right) \left(\frac{\partial \bar{V}}{\partial p} \right) = -\frac{\bar{V}^2}{kT}
\]

\[
\bar{V}^2 - \bar{V}^2 = -kT \left(\frac{\partial \bar{V}}{\partial p} \right)
\]

\[
\frac{\bar{V}^2 - \bar{V}^2}{\bar{V}^2} = -\frac{kT}{\bar{V}} \left(\frac{\partial \bar{V}}{\partial p} \right) = kT \frac{\bar{V}}{\bar{V}} \kappa
\]

where \(\kappa = -\frac{1}{\bar{V}} \left(\frac{\partial \bar{V}}{\partial p} \right) = \text{compressibility} \).

(b) Evaluate this relationship for an ideal gas.

\[
pV = NkT
\]

\[
\kappa = -\frac{1}{\bar{V}} \left(\frac{\partial \bar{V}}{\partial p} \right) = \left(-\frac{1}{\bar{V}} \right) \left(-\frac{NkT}{p^2} \right) = \frac{1}{p}
\]

\[
\frac{\bar{V}^2 - \bar{V}^2}{\bar{V}^2} = \frac{kT}{\bar{V}} \left(\frac{1}{p} \right) = \frac{1}{N}
\]

This is a general result for the fluctuation of an extensive variable for an ideal gas. It means the fluctuations are small when \(N \) is large.

(c) When can the volume fluctuations become large?

Near a critical point where \(\kappa = -\frac{1}{\bar{V}} \left(\frac{\partial \bar{V}}{\partial p} \right) \to \infty \).
Problem 3

(a) The degeneracy

\[
\Omega = \frac{M!}{N!(M-N)!}\]

which is the number of ways to distribute \(N\) particles and \((M - N)\) vacancies over \(M\) surface sites.

(b) \(N, V, T\) constant mean the canonical ensemble

\[
Q = \sum_j e^{-\beta E_j} = \sum E \Omega(E) e^{-\beta E}
\]

\(E = -N \varepsilon\) which depends only on \(N\) and not the particular arrangement of the atoms. But since \(N\) is fixed, there is only one energy level.

\[
Q = \frac{M!}{N!(M-N)!} e^{\beta N \varepsilon}
\]

(c) Obtain an expression for the chemical potential of the argon atoms on the surface

\[
\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V}
\]

\[
F = -kT \ln Q = -kT \left\{ \ln \left(\frac{\frac{M!}{N!(M-N)!}}{\varepsilon} \right) + \beta N \varepsilon \right\}
\]

\[
F = -kT \left\{ \ln (M!) - N \ln N + N - (M - N) \ln (M - N) + (M - N) \right\} - N \varepsilon
\]

\[
\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V} = -kT \left\{ - \ln N + 1 + \ln (M - N) + 1 - 1 \right\} - \varepsilon
\]

if we let \(x = \frac{N}{M}\) we get

\[
\mu = -\varepsilon + kT \ln \left(\frac{N}{M-N} \right) = -\varepsilon + kT \ln \left(\frac{x}{1-x} \right)
\]

Problem 4

(a) We assumed:

- Boltzmann statistics
- non-interacting particles
- gas particles are indistinguishable
- mono-atomic particles, in which electronic & nuclear excitations are neglected

(b) \(\mu = 0\)

(c) Yes for both Fermions and Bosons but at high \(T\), low density, high mass.

(d) \(P_{AB}\) for a totally random solution is equal to \(2x_A x_B = 0.5\). Hence, a value of \(P_{AB} = 0.25\) represents short-range clustering. This restriction on the number of microstates reduces the entropy. To increase \(S\) we need to increase \(P_{AB}\) towards 0.5.
Problem 5

<table>
<thead>
<tr>
<th></th>
<th>S_{tot}</th>
<th>$S_{\text{tot}}/2N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$k \ln 1$ or $k \ln 2$</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>$k \ln N$ (N ways to insert atom)</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>$-Nk \begin{pmatrix} 0.01 \ln 0.01 + 0.99 \ln 0.99 \ -0.056 \end{pmatrix}$</td>
<td>$-\frac{1}{2}k [0.01 \ln 0.01 + 0.99 \ln 0.99]$</td>
</tr>
<tr>
<td>(d)</td>
<td>There are $\frac{4 \times 2N}{2}$ number of pairs, each can be exchanged $\rightarrow k \ln 4N$</td>
<td>0</td>
</tr>
</tbody>
</table>