Phase Transformations: Solidification
Today’s topics:

- Solidification of superheated liquid against a cooled mold wall
- Solidification of supercooled liquid by a nucleation event in the liquid
- Shape stability of the solid/liquid interface
- Constitutional supercooling of an alloy
- Casting microstructures
Solidification of superheated liquid

- Heat removed through mold wall at $T < T_m$

Figure removed due to copyright restrictions.

- Interface *stable* with respect to shape variations

Figure removed due to copyright restrictions.
Solidification of supercooled liquid

- Latent heat removed into liquid at \(T < T_m \)

Figure removed due to copyright restrictions.

- Interface *unstable* with respect to shape variations

Figure removed due to copyright restrictions.
Constitutional supercooling in alloys

- Solute enrichment ahead of an advancing solid/liquid interface can effectively supercool the adjacent liquid by forming liquid compositions that are below their melting temperature. This commonly results in dendrite formation in alloys.

Figure removed due to copyright restrictions.
Cells and dendrites

Features resulting from shape instability

Cells & Dendrites

$\sim 10 \mu m$

Macro grain structure of a casting

$\sim 0.1 - 10 \text{ mm grains}$

Figure removed due to copyright restrictions.

Figure removed due to copyright restrictions.
SEM View of Dendrites in Cu–Ni–Mn Alloy

These dendrites are very large because the liquid metal was cooled very slowly.

When a material solidifies dendritically and forms a polycrystal, the grain size is generally much larger than the dendrite spacing.

Alloy solidification via dendrite formation leads to compositionally inhomogeneous material.

Figure removed due to copyright restrictions.
Microsegregation

- Alloy solidification via dendrite formation leads to compositionally inhomogeneous material.

Figure removed due to copyright restrictions.