3.22 Mechanical Properties of Materials
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Defect Nucleation in Crystalline Metals

Tim Rupert, Aparna Singh, Kang ShinYoung, Hyunjung Yi
MIT Department of Materials Science and Engineering
Cambridge, MA 02139 USA

3.22 Mechanical Behavior of Materials

- Defect nucleation plays an important role in defect-free material volumes or if system size is reduced to the submicron level
- The stress required to nucleate a dislocation homogeneously sets an upper bound for the effectiveness of our strengthening mechanisms
- Understanding defect nucleation is part of the puzzle for understanding the breakdown of Hall-Petch scaling in nanocrystalline materials

![Graph: Hardness as a function of grain size](http://www.sciencedirect.com)

Hardness as a function of grain size. [2] Defect nucleation from grain boundaries. [3]

Microscopic mechanism

- When a bond breaks in shear, a new bond will usually form immediately afterwards between the new atomic neighbors. This process of bond breaking and reformation controls defect nucleation.

- The stress needed to cause such an event should correspond to the theoretical shear strength we calculated in class.

- A defect should nucleate when this stress is reached to relieve the high strain energy built up at this point.

In-situ TEM micrographs from [4], illustrating the response of an Al grain to nanoindentation.

Defect nucleation should occur when our shear stress is maximum and near the theoretical shear stress.

Shear stress plot along the depth of the indented material by using 2D indentation model. [5]

Nucleation of dislocation at z=0.78a in bubble raft model. [6]

2D material analogs (bubble raft models), molecular dynamics simulations, and in-situ TEM indentation all support the predicted result.