3.23 Electrical, Optical, and Magnetic Properties of Materials
Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Fermi’s Golden Rule

Study

- Fox, Optical Properties of Solids: 3.1 to 3.6 (skip 3.3.5 and 3.3.6), 4.1, 4.2, and Appendix B.2
Boundary conditions

\[\hat{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0 \]

\[\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma \ (\sigma = \text{surface charge density}) \]

\[\hat{n} \times (\vec{E}_2 - \vec{E}_1) = 0 \]

\[\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{K} \]

(\(\vec{K} = \text{surface current density} \))

Snell’s law

\[
\left(\vec{k}_1 \cdot \vec{r}_i \right) = \left(\vec{k}'_1 \cdot \vec{r}_i \right) = \left(\vec{k}_2 \cdot \vec{r}_i \right)
\]

\[
k_{1z} = \left| \vec{k}_1 \right| \sin \theta_1 = n_1 \frac{\omega}{c} \sin \theta_1 \quad n_1 \sin \theta_1 = n_2 \sin \theta_2
\]

\[
k_{2z} = \left| \vec{k}_2 \right| \sin \theta_2 = n_2 \frac{\omega}{c} \sin \theta_2
\]

Image from Wikimedia Commons, http://commons.wikimedia.org
Energy conservation

\[\int \mathbf{J} \cdot \mathbf{E} \, dv + \frac{\partial}{\partial t} \int \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B} \right) \, dv + \int \mathbf{E} \times \mathbf{H} \cdot \mathbf{n} \, dS = 0 \]

- total energy stored in electrical and magnetic field per volume
- energy surface flux per unit area

\[\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} \]

Optical processes

- Reflection and refraction
- Absorption
- Luminescence
- Scattering
Optical coefficients

T: ratio of transmitted vs incident power

R+T=1 (no absorption, scattering)

Absorption:

Transmission:

Modeling Optical Constants with a Damped Harmonic Oscillator

$$\varepsilon = \left(n + ik \right)^2 = \frac{n^2 - k^2}{\varepsilon_1} + \frac{2nk}{\varepsilon_2}$$

$$\varepsilon = 1 + 4\pi \chi + 4\pi \frac{Ne^2 \left(\omega_0^2 - \omega^2 \right)}{m_0 \left(\omega_0^2 - \omega^2 \right)^2 + \gamma^2 \omega^2} \frac{-i4\pi}{\varepsilon_1} \frac{Ne^2 \gamma \omega}{m_0 \left(\omega_0^2 - \omega^2 \right)^2 + \gamma^2 \omega^2}$$
Amorphous silica

Figure by MIT OpenCourseWare.

Kramers-Kronig relations

\[
n(\omega) = 1 + \frac{1}{\pi} \text{P} \int_{-\infty}^{\infty} \frac{\kappa(\omega')}{\omega' - \omega} d\omega'
\]

\[
\kappa(\omega) = -\frac{1}{\pi} \text{P} \int_{-\infty}^{\infty} \frac{n(\omega') - 1}{\omega' - \omega} d\omega'
\]
Optical materials

Image removed due to copyright restrictions.

Infrared active modes

Image removed due to copyright restrictions.

Please see Fig. 1a and 2a in Giannozzi, Paolo, et al.
Optical materials

Image removed due to copyright restrictions.

Optical materials

Image removed due to copyright restrictions.

Interband absorption

Image removed due to copyright restrictions.

Direct and indirect transitions

Image removed due to copyright restrictions.

Please see: Fig. 3.2 in Fox, Mark. *Optical Properties of Solids*. Oxford, England: Oxford University Press, 2001.
Transition rate for direct absorption

Transition rates: perturbing Hamiltonian
Transition rates: perturbing Hamiltonian

Transition rate for direct absorption