3.37 (Class8)

Review

C4 (Area Array) 1000-2000 I/O

Cold welding
 • Aluminum is the second easiest metal to cold weld
 • Make near perfect welds in aluminum wire

Adhesive Bonding
 • Unique in that it does not remove surface contamination
 • Type I Adhesive Bonding results from attractive force of wetted liquid at the
 interface (lowers the interfacial energy, van der Waals bonds, inherently weaker
 than primary bonding)
 o Example: adhesive to attach rear-view mirror to the windshield
 • Type II AB mechanical interlocking
 • Contact angle <30deg required for wetting (usually want something less than
 10deg), young’s equation: metals are nice, strongest solder/braze joints

Today

Surface preparation
 • Rough surfaces wet more easily (surface area is greater, reduced surface energy)
 • Anodizing aluminum
 o Aluminum oxide growth makes a great mechanical interlocking surface,
 anodized coating
 o If want corrosion resistance, need to seal the surface, otherwise have
 channels down to the metal
 o Seal it by boiling it in hot water to grow oxide between cells, sometimes
 also use sulfuric acid
 • Phosphate steel (coke/pepsi are phosphoric acid on iron)
 o First used for lubrication, if want lubricant to adhere to the surface, want
 to have a porous surface, use calcium stearate (soap), have a thick layer of
 lubricant
 o Cold heading, start with rod, shear it, then phosphate it so that it can be
 worked multiple times, couldn’t do this unless surface was prepared
 • Titanium anodized, surgical instruments, can anodize with different voltages,
 change thickness, changes color
 o Anodized titanium jewelry
 • Chromates can also be used (but create environmental hazards in applying)

Stefan equation
 • Time to squeeze a viscous liquid between plates
 None of the modern books on adhesives go through this

• Force*time product = see equation on board
 • Viscosity
 • Initial and final separations
 • Radius for a circular disc

• Looking at different forces, viscosities, radii, and separations
 • Water at given parameters 7.5ms
 • As the joint gets thinner, time gets longer
 • Also works in reverse, how long will it take the joint to separate as the viscous liquid flows with time
 • Start with something that forms quickly, then change it so that it lasts a long time (by changing the viscosity)
 • Viscosity is measured as a shear stress, how fast it moves at a given shear stress
 ▪ Gas approx 10^{-3}
 ▪ Water approx 1
 ▪ Molasses about 100, 1000
 ▪ Solid approx 10^{10} or 10^{14}
 ▪ Highest viscosity ever measured, of Finnish coastline 10^{22}
 • Can increase viscosity by an order of 10^{10}
 ▪ 10^{10} sec is many years

• Filling bottles at rate of about 24/sec, also need to put the label on within a short period of time, so need an adhesive that doesn’t take long to form

• How to change a liquid into a solid
 • Freeze it
 • Dissolve something in a solvent and then let it evaporate (like licking a postage stamp)
 • Chemical reaction (epoxy with two elements that solidify based on a chemical reaction)

• Homework: think of all sorts of adhesive, ask self by what method this was done.