Double Hetero structure laser

| AlGaAs | GaAs | AlGaAs |

1. Large refractive index active region
2. Low E_g active region

η_b is increased
- faster inversion for same injection current
- light concentrated for stimulated emission

Confinement

Γ

$\Gamma = \frac{1}{d}$

$\Gamma \propto \Delta n d^2$

$\Gamma \propto \Delta n d$

DH: Double Heterostructure
SQW: Single Quantum Well
SCH: Separate Confinement Heterostructure

Notes:
(band structure engineering)

light (guided) confinement
carrier (electron and hole) confinement

$100 \times \downarrow$ of J_{th}
Density of States of QW

\[\rho(E) = 10^{12} \text{ states/cm}^2 \text{ for } \Delta E = kT \]

\[\frac{\rho(E)}{\hbar d} = \frac{2m_r}{\hbar d} \]

Threshold current density

\[J_{th} = eR_{th} \]

\[J_{th} \approx 6.4 \text{ kA/cm}^2 \cdot \mu \text{m} \]

Threshhold current density

\[R_{th} = \text{threshold recombination rate} \]

Notes

- \(n_{th} \downarrow \text{ as } d \downarrow \)
- \(g(\nu) \propto f_g(\nu) \cdot \rho_{\text{bulk}}(\nu) \)
- \(g_p : \text{peak gain} \)
- \(\text{higher } T \text{ stability} \)
- \(g(\nu) \propto f_g(\nu) \cdot \rho_{\text{QW}}(\nu) \)
- \(\rho(\nu) = 10^{12} \text{ states/cm}^2 \text{ for } \Delta E = kT \)
DH:
\[J_{th} = 1.2 \text{ kA/cm}^2 \]
\[I_{th} \approx 10 - 20 \text{ mA} \]

SQW:
\[d < 300 \text{ Å} \]
\[J_{th} < 180 \text{ A/cm}^2 \]

SQW
1. E levels quantized → lasing @ QW transitions
2. \(\rho(\nu)(2D) \) more efficient, \(g_p = \text{const}(\nu) \)
3. \(g \) saturates
4. QW \(\approx 10^{12} \) states/cm\(^2\)
 DH \(\approx 10^{13} \) states/cm\(^2\) in \(d = 1000\text{Å} \)
5. Confinement optimized by separation SCH

Strained Layers

Strain (compressive)
- raises the LH sub band
- reduces carriers to invert \(\Rightarrow J_{th} \downarrow \)
 \(\Rightarrow \eta_{id} \uparrow \)

Unstrained

Strained

Notes
C

V

d<300Å
with band filling, transition not @ \(g_p \) are useless
III-V Compound Semiconductor Processing

1. Substrate Preparation
 GaAs, InP
2. Epitaxial layer growth
 LPE, MBE, MOCVD, CVD
3. Etch
 Dry (RIE), wet
4. Contacts
 Au, silicides, metals

1. Process Constraints
 A. CSBH laser provides (CSBH: Channeled-Substrate Buried Heterostructure) lateral optical and electrical confinement.
 i. grow InP:Fe SI layer
 ii. etch channel
 iii. grow InP/InGaAsP/InP DH in channel
 B. APD detector (SAM)
 i. grow InGaAs/InP het.
 ii. SiNx dielectric deposition
 iii. etch contact window
 iv. diffuse p+ contact/junction
 v. implant p- guard ring

Both devices employ deposited dielectrics for AR coatings (APD) and facet reflectors (laser).

2. Issues
 A. Groups V volatility
 i. incongruent vaporization of P from InP @ T > 360°C
 ii. as from GaAs @ T > 600°C
 Solution: group V overpressure or stable dielectric cap layer.
 iii. RIE creates group III rich suffice
 Solution: lower T, lower E, high Z (Z: atomic number)
B. Preferential etch of V groove
Solution: surface prep.

C. Metallization reactions
Solution: barriers or stable phases

D. Degradation of η_i
Solution: defect control, life testing

3. Epitaxial Growth

A. Dislocation density
B. Stoichiometry

Concept: Single crystal film bonded to a single crystal substrate with a common interface and the lattice of the film having a definite orientation w.r.t. the substrate lattice.

Substrate: semi infinite thickness

Surface: atomically flat (ledges) (bond reconstruction)

Film: homogeneous, 2D ($x, y >> t$) (phase separation?)

Interface: sharp (interdiffusion)

Tangential forces: sinusoidal in a_0

Growth Modes

$E_{fs} =$ film/substrate bond strength
$E_{ff} =$ film/film bond strength
$W = \frac{E_{fs}}{E_{ff}} =$ relative strength of bonds to substrate

$\eta =$ lattice misfit $= \frac{a_s - a_f}{a_f}$

Notes

$\text{Si}(100) \ 2 \times 1$
or
$\text{GaAs}(100) \rightarrow \text{rows of AS}$
$\text{V-termination} \rightarrow \text{flat surface}$
Lecture

Epitaxy

equilibrium:
- low deposition rate
- high T (surface diffusion)
- minimize $\frac{\Delta G}{N_f}$ (system energy)

Coherency (dislocations)

1. variables: a, E_{ff}, h
2. minimize energy

$$E_e = \varepsilon^2 Bh$$

separation of parallel misfit dislocations:

$$S = \frac{|b|}{\delta}$$

$$\eta \text{ (relaxed)} = \varepsilon + \frac{1}{S} |b| \cos \lambda$$

projection of \bar{b} on plane of interface

Critical h_c

minimize E_e vs. $E_{\text{dislocation}}$

Matthews–Blakelee

$$h_c = \frac{b}{8\pi\eta(1+\nu)} \left[\ln \left(\frac{h_c}{b} \right) + 1 \right]$$

$$h_c \approx \frac{b}{4\eta}$$

$$|b| \approx 1 \text{ Å} \Rightarrow h_c = 100 \text{ Å} \text{ of } \eta = 10^{-2}$$

Notes

Frank-Vander Merwe 1D harmonic chain

δ = strain relief by dislocations

3.46 Photonic Materials and Devices
Prof. Lionel C. Kimerling
Morphology (wetting)

\[\mu_r = \frac{\partial G}{\partial N} \]

ML: monolayers

Nucleation barrier to clustering

\[\Delta G^* = \frac{8\pi\gamma_{c/v}^3}{3\rho_0^2 [\Delta F(\eta)]^2} \]

\[N^* = \frac{16\pi\gamma_{c/v}^3}{3[\Delta F(\eta)]^3 \rho_0^2} \]

\[I = N_s \Gamma \exp(-\Delta G^*/RT) \]

Morphology + Coherency are determined by nucleation barriers \(\Delta G^* \) for dislocation formation clustering

Metastability is common
4. **Contacts**

- stable
- selective
- low R_c
- low T deposition
- adhesion

Eutectics

- Au(Be) P
- Au(Ge) n

- small process window
 - RTA
- unreliable

Silicides

- Stable
 - undefined interface
 $\rightarrow R_c \uparrow$

Metals

- reactive with compounds
 \rightarrow defects, dissociation
 \rightarrow phase stability

\[R_c < 10^{-6} \Omega \cdot \text{cm}^2 \]

for lasers

surface defects pin E_F

\rightarrow contact resistance
(Schottky Barrier)

for n-GaAs
 - p-InP

\Rightarrow heavily doped epilayer under contact
AB dominant

500 °C

Ga

GaAs

As

MA_x

MB_y

A

AB

B

No phase dominant

300 °C

Pt

GaPt

PtAs_2

Ga

GaAs

As

PtGa_3

PtAs_2 + PtGa

GaAs

PtGa_3

PtAs_2

GaAs

Ti

TiGa_4

TiGa_3

TiAs

Ga

GaAs

As

TiGa_4

TiGa_3

TiAs

Ga

GaAs

As

3.46 Photonic Materials and Devices
Prof. Lionel C. Kimerling

Lecture 15: III-V Processing
Page 9 of 11
NiP (conductor)

Ni

In

InP

P

Ni

InNi

InP

P

NiP (conductor)
Adhesion:
- local structural relaxation
- ion beam mixing
- chemical bonding
 \((\text{Cu}/\text{Al}_2\text{O}_3 \text{ with excess } 2)\)

Interdiffusion
- Polycrystal: grain boundary diffusion
 \[D_{\text{bulk}} = \frac{E_a}{4}, \quad D_{\text{disloc}} \sim \frac{3E_a}{4}, \quad D_{\text{gb}} \sim \frac{E_a}{2}\]
 \[D = D_{\text{bulk}} + f \cdot D_{\text{gb}}\]

 \[D_{\text{bulk}}(T_{\text{MP}}) \sim D_{\text{gb}} \left(\frac{1}{2} T_{\text{MP}}\right)\]

- Diffusion Barrier (Ti/Pt)Au
 - high \(T_{\text{MP}}\)
 - chemically stable
- Intermetallic Compound
- Coherent Interface

Dielectric Deposition
SiO\(_2\), SiO\(_x\)N\(_y\), SiN\(_x\)
- sputter
- PECVD
- e-beam
 facets, isolation, diffusion masks

Etch
- Wet etch (Br:CH\(_3\)OH, HCl)
 - layer stop \(\text{H}_2\text{SO}_4 : \text{H}_2\text{O}_2 : \text{H}_2\text{O}\)
 - v-groove
- Dry etch (CF\(_2\)Cl\(_2\), (HBr, HI)
 - Anisotropy
 - Photoelectrochemical etch
 anisotropy

refractory TM: Cr, Ni, Ta, Ti, Hf