Engineering stress $G=E/3$ for rubber:

$$\text{sigma}[e] := G^*(\lambda - (1/\lambda^2))$$

True stress:

$$\text{sigma}[t] := \text{sigma}[e] \times \lambda$$

Set $G=1$ and plot to investigate the nature of this function:

$$G:=1; \text{plot} (\text{sigma}[t], \lambda = 0..10);$$

This function has no tangents, and thus will not form a neck.

We can also examine the Considere condition mathematically, which states that necking occurs when

$$\frac{\sigma_t}{\lambda} \geq \frac{d\sigma_t}{d\lambda}$$

Using Eq (1) above for σ_t, this gives

$$\lambda + \frac{2}{\lambda^2} \leq 0$$

But for λ positive this never occurs, so necking cannot occur either.