18.01 PRACTICE FINAL, FALL 2003

Problem 1 Find the following definite integral using integration by parts.

\[\int_{0}^{\pi} x \sin(x) \, dx. \]

Problem 2 Find the following antiderivative using integration by parts.

\[\int x \sin^{-1}(x) \, dx. \]

Problem 3 Use L'Hospital's rule to compute the following limits.

(a) \(\lim_{x \to 0} \frac{e^x - b^x}{x^2} \), \(0 < a < b \).

(b) \(\lim_{x \to 1} \frac{4x^3 - 5x + 1}{\ln x} \).

Problem 4 Determine whether the following improper integral converges or diverges.

\[\int_{1}^{\infty} e^{-x^2} \, dx. \]

(Hint: Compare with another function.)

Problem 5 You wish to design a trash can that consists of a base that is a disk of radius \(r \), cylindrical walls of height \(h \) and radius \(r \), and the top consists of a hemispherical dome of radius \(r \) (there is no disk between the top of the walls and the bottom of the dome; the dome rests on the top of the walls). The surface area of the can is a fixed constant \(A \). What ratio of \(h \) to \(r \) will give the maximum volume for the can? You may use the fact that the surface area of a hemisphere of radius \(r \) is \(2\pi r^2 \), and the volume of a hemisphere is \(\frac{2}{3} \pi r^3 \).

Problem 6 A point on the unit circle in the \(xy \)-plane moves counterclockwise at a fixed rate of \(1 \, \text{radian/second} \). At the moment when the angle of the point is \(\theta = \frac{\pi}{4} \), what is the rate of change of the distance from the particle to the \(y \)-axis?

Problem 7 Compute the following integral using a trigonometric substitution. Don’t forget to back-substitute.

\[\int \frac{x^2}{\sqrt{1 - x^2}} \, dx. \]

Hint: Recall the half-angle formulas, \(\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta)) \), \(\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)) \).

Problem 8 Compute the volume of the solid of revolution obtained by rotating about the \(x \)-axis the region in the 1\(^{st} \) quadrant of the \(xy \)-plane bounded by the axes and the curve \(x^4 + r^2 y^2 = r^4 \).

Problem 9 Compute the area of the surface of revolution obtained by rotating about the \(y \)-axis the portion of the lemniscate \(r^2 = 2a^2 \cos(2\theta) \) in the 1\(^{st} \) quadrant, i.e., \(0 \leq \theta \leq \frac{\pi}{4} \).

Problem 10 Compute the area of the \(\text{lune} \) that is the region in the 1\(^{st} \) and 3\(^{rd} \) quadrants contained inside the circle with polar equation \(r = 2a \cos(\theta) \) and outside the circle with polar equation \(r = a \).

Problem 11 Find the equation of every tangent line to the hyperbola \(C \) with equation \(y^2 - x^2 = 1 \), that contains the point \((0, \frac{1}{2}) \).

Date: Fall 2003.
Problem 12 Compute each of the following integrals.

(a) \(\int \sec^3(\theta) \tan(\theta) d\theta \).
(b) \(\int \frac{x^2 - 1}{x(x+1)^2} dx \).
(c) \(\int \frac{2x-1}{2x^2 - 2x + 3} dx \).
(d) \(\int \sqrt{e^{3x}} dx \).