Lecture 5. September 16, 2005

Homework. Problem Set 2 Part I: (a)–(e); Part II: Problem 2.

Practice Problems. Course Reader: II-1, II-4, II-5

1. Example of implicit differentiation. Let \(y = f(x) \) be the unique function satisfying the equation,
\[
\frac{1}{x} + \frac{1}{y} = 2.
\]
What is slope of the tangent line to the graph of \(y = f(x) \) at the point \((x, y) = (1, 1)\)?

Implicitly differentiate each side of the equation to get,
\[
\frac{d}{dx} \left(\frac{1}{x} \right) + \frac{d}{dx} \left(\frac{1}{y} \right) = \frac{d(2)}{dx} = 0.
\]

Of course \((1/x)' = (x^{-1})' = -x^{-2} \). And by the rule \(d(u^n)/dx = nu^{n-1}(du/dx) \), the derivative of \(1/y \) is \(-y^{-2}(dy/dx)\). Thus,
\[
-x^{-2} - y^{-2} \frac{dy}{dx} = 0.
\]

Plugging in \(x = 1 \) and \(y = 1 \) gives,
\[
-1 - 1y'(1) = 0,
\]
whose solution is,
\[
y'(1) = -1.
\]

In fact, using that \(1/y = 2 - 1/x \), this can be solved for every \(x \),
\[
\frac{dy}{dx} = (x^{-2})/(y^{-2}) = \frac{1}{x^2} \cdot \frac{1}{(2 - 1/x)^2} = \frac{1}{(2x - 1)^2}.
\]

2. Rules for exponentials and logarithms. Let \(a \) be a positive real number. The basic rules of exponentials are as follows.

Rule 1. If \(a^b \) equals \(B \) and \(a^c \) equals \(C \), then \(a^{b+c} \) equals \(B \cdot C \), i.e.,
\[
a^{b+c} = a^b \cdot a^c.
\]

Rule 2. If \(a^b \) equals \(B \) and \(B^d \) equals \(D \), then \(a^{bd} \) equals \(D \), i.e.,
\[
(a^b)^d = a^{bd}.
\]

If \(a^b \) equals \(B \), the logarithm with base \(a \) of \(B \) is defined to be \(b \). This is written \(\log_a(B) = b \). The function \(B \rightarrow \log_a(B) \) is defined for all positive real numbers \(B \). Using this definition, the rules of exponentiation become rules of logarithms.
Rule 1. If \(\log_a(B) \) equals \(b \) and \(\log_a(C) \) equals \(c \), then \(\log_a(B \cdot C) \) equals \(b + c \), i.e.,

\[
\log_a(B \cdot C) = \log_a(B) + \log_a(C).
\]

Rule 2. If \(\log_a(B) \) equals \(b \) and \(B^d \) equals \(D \), then \(\log_a(D) \) equals \(d \log_a(B) \), i.e.,

\[
\log_a(B^d) = d \log_a(B).
\]

Rule 3. Since \(\log_B(D) \) equals \(d \), an equivalent formulation is \(\log_a(D) \) equals \(\log_a(B) \log_B(D) \), i.e.,

\[
\log_a(D) = \log_a(B) \log_B(D).
\]

3. The derivative of \(a^x \). Let \(a \) be a positive real number. What is the derivative of \(a^x \)? Denote the derivative of \(a^x \) at \(x = 0 \) by \(L(a) \). It equals the value of the limit,

\[
L(a) = \lim_{h \to 0} \frac{a^h - 1}{h}.
\]

Then for every \(x_0 \), the derivative of \(a^x \) at \(x_0 \) equals,

\[
\lim_{h \to 0} \frac{a^{x_0+h} - a^{x_0}}{h}.
\]

By Rule 1, \(a^{x_0+h} \) equals \(a^{x_0}a^h \). Thus the limit factors as,

\[
\lim_{h \to 0} \frac{a^{x_0}a^h - a^{x_0}}{h} = a^{x_0} \lim_{h \to 0} a^h - 1h.
\]

Therefore, for every \(x \), the derivative of \(a^x \) is,

\[
\frac{d(a^x)}{dx} = L(a)a^x.
\]

What is \(L(a) \)? To figure this out, consider how \(L(a) \) changes as \(a \) changes. First of all,

\[
L(a^b) = \lim_{h \to 0} \frac{(a^b)^h - 1}{h}.
\]

By Rule 2, \((a^b)^h \) equals \(a^{bh} \). So the limit is,

\[
L(a^b) = \lim_{h \to 0} \frac{a^{bh} - 1}{h} = b \lim_{h \to 0} \frac{a^{bh} - 1}{bh}.
\]

Now, inside the limit, make the substitution that \(k \) equals \(bh \). As \(h \) approaches 0, also \(k \) approaches 0. So the limit is,

\[
L(a^b) = b \lim_{k \to 0} \frac{a^k - 1}{k} = bL(a).
\]
This is very similar to Rule 2 for logarithms.

Choose a number \(a_0 \) bigger than 1, say \(a_0 = 2 \). Then for every positive real number \(a \), \(a = a_0^b \) where \(b = \log_{a_0}(a) \). Thus,

\[
L(a) = L(a_0^b) = bL(a_0) = L(a_0)\log_{a_0}(a).
\]

So, with \(a_0 \) fixed and \(a \) allowed to vary, \(L(a) \) is just the logarithm function \(\log_{a_0}(a) \) scaled by \(L(a_0) \). Looking at the graph of \((a_0)^x \), it is geometrically clear that \(L(a_0) \) is positive (though we have not proved that \(L(a_0) \) is even defined). Thus the graph of \(L(a) \) looks qualitatively like the graph of \(\log_{a_0}(a) \). In particular, for \(a \) less than 1, \(L(a) \) is negative. The value \(L(1) \) equals 0. And \(L(a) \) approaches \(+\infty\) and \(a \) increases. Therefore, there must be a number where \(L \) takes the value 1. By long tradition, this number is called \(e \);

\[
L(e) = \lim_{h\to 0} \frac{e^h - 1}{h} = 1.
\]

This is the definition of \(e \). It sheds very little light on the decimal value of \(e \).

Because \(e \) is so important, the logarithm with base \(e \) is given a special name: the natural logarithm. It is denote by,

\[
\ln(a) = \log_e(a).
\]

So, finally, \(L(a) \) equals,

\[
L(a) = \log_e(a) L(e) = \ln(a)(1) = \ln(a).
\]

This leads to the formula for the derivative of \(a^x \),

\[
\frac{d(a^x)}{dx} = \ln(a)a^x.
\]

In particular,

\[
\frac{d(e^x)}{dx} = e^x.
\]

In fact, \(e^x \) is characterized by the property above and the property that \(e^0 \) equals 1.

4. The derivative of \(\log_a(x) \) and the value of \(e \). By the chain rule,

\[
\frac{d(a^u)}{dx} = \ln(a)a^u \frac{du}{dx}.
\]

For \(u = \log_a(x) \), \(a^u \) equals \(x \). Thus,

\[
\frac{d(a^u)}{dx} = \frac{d(x)}{dx} = 1.
\]

Thus,

\[
\ln(a)a^u \frac{du}{dx} = 1.
\]
Solving gives,\[\frac{d \log_a(x)}{dx} = \frac{1}{\ln(a)} \frac{1}{a^u} = \frac{1}{(\ln(a)x)}. \]

In particular, for \(a = e \), this gives,\[\frac{d \ln(x)}{dx} = \frac{1}{x}. \]

What is the derivative of \(\ln(x) \) at \(x = 1 \)? On the one hand, since the derivative of \(\ln(x) \) equals \(1/x \), the derivative at \(x = 1 \) is \(1/1 = 1 \). On the other hand, the definition of the derivative gives,

\[\lim_{h \to 0} \frac{\ln(1 + h) - \ln(1)}{h}. \]

Of course, \(\ln(1) \) equals 0, so this simplifies to,\[\lim_{h \to 0} \frac{1}{h} \ln(1 + h). \]

Using Rule 2 for logarithms, this gives,\[\lim_{h \to 0} \ln((1 + h)^{1/h}). \]

Since \(\ln(y) \) is continuous, the limit equals,

\[\ln[\lim_{h \to 0} (1 + h)^{1/h}]. \]

So the natural logarithm of the inner limit equals 1. But \(e \) is the unique number whose natural logarithm equals 1. This leads to the formula,

\[e = \lim_{h \to 0} (1 + h)^{1/h}. \]

Making the substitution \(n = 1/h \) leads to the more familiar form,\[\lim_{n \to +\infty} (1 + 1/n)^n = e. \]

This can be used to compute \(e \) to arbitrary accuracy. The first few digits of \(e \) are 2.718281828459045...

5. **Logarithmic differentiation.** There is a method of computing derivatives of products of functions that is often useful. If \(y \) is a product of \(n \) factors, say \(f_1(x) \cdot f_2(x) \cdot \ldots \cdot f_n(x) \), the derivative of \(y \) can be computed by the product rule. However, it seems to be a fact that multiplication is more error-prone than addition. Thus introduce,\[u = \ln(y) = \ln(f_1(x)) + \ln(f_2(x)) + \ldots + \ln(f_n(x)). \]
The derivative of u is,

$$\frac{du}{dx} = \frac{d}{dx} (\ln(f_1(x))) + \cdots + \frac{d}{dx} (\ln(f_n(x))).$$

Using the chain rule, this is,

$$\frac{du}{dx} = \frac{f'_1(x)}{f_1(x)} + \cdots + \frac{f'_n(x)}{f_n(x)}.$$

Thus, far fewer multiplications are needed to compute u'. This is good, because also,

$$\frac{dy}{dx} = \frac{d}{dx} \ln(y) = \frac{1}{y} \frac{dy}{dx}.$$

Therefore the derivative of y can be computed as,

$$y' = yu' = (f_1(x) \cdots f_n(x)) \left(\frac{f'_1(x)}{f_1(x)} + \cdots + \frac{f'_n(x)}{f_n(x)} \right).$$

Example. Let y be,

$$\frac{(1 + x^3)(1 + \sqrt{x})}{x^{3/7}}.$$

Then,

$$u = \ln(y) = \ln(1 + x^3) + \ln(1 + \sqrt{x}) - \frac{3}{7} \ln(x).$$

By the chain rule, $\ln(1+x^3)' = 3x^2/(1+x^3)$ and $\ln(1+\sqrt{x})' = (\sqrt{x})'/(1+\sqrt{x}) = (1/2x^{-1/2})/(1+\sqrt{x})$. Thus, u' equals,

$$u' = \frac{3x^2}{(1 + x^3)} + \frac{1}{2\sqrt{x}(1 + \sqrt{x})} - \frac{3}{7x}.$$

So, finally,

$$y' = yu' = \frac{(1 + x^3)(1 + \sqrt{x})}{x^{3/7}} \left(\frac{3x^2}{(1 + x^3)} + \frac{1}{2\sqrt{x}(1 + \sqrt{x})} - \frac{3}{7x} \right).$$