Problem 1: Prove that a sequence converges if, and only if its liminf equals its limsup.

Solution (4 points) Suppose \(\{ a_n \} \) is a sequence that converges to a limit \(L \). Then given \(\epsilon > 0 \), there exists an integer \(N \) such that \(n > N \) implies \(|a_n - L| < \frac{\epsilon}{2} \). In particular, the set \(\{ a_n \} \) for \(n > N \) is bounded below by \(L - \frac{\epsilon}{2} \) and bounded above by \(L + \frac{\epsilon}{2} \). Thus,

\[
L + \frac{\epsilon}{2} \geq \inf_{n \geq N+1} a_n \geq L - \frac{\epsilon}{2} \quad \text{and} \quad L + \frac{\epsilon}{2} \geq \sup_{n \geq N+1} a_n \geq L - \frac{\epsilon}{2}.
\]

In particular, given \(\epsilon > 0 \), there exists \(N \) such that \(m > N \) implies

\[
\inf_{n \geq m} a_n - L < \epsilon, \quad \sup_{n \geq m} a_n - L < \epsilon.
\]

We conclude \(\liminf a_n = L = \limsup a_n \) and the liminf equals the limsup.

Conversely, suppose \(\{ a_n \} \) is a sequence such that \(\liminf a_n = L = \limsup a_n \). We will show \(\lim_{n \to \infty} a_n = L \). Given \(\epsilon > 0 \), there exist \(N_1 \) and \(N_2 \) such that \(m > N_1 \) implies

\[
\inf_{n \geq m} a_n - L < \epsilon
\]

and \(m > N_2 \) implies

\[
\sup_{n \geq m} a_n - L < \epsilon.
\]

Let \(N = \max\{N_1, N_2\} \). If \(m > N_1, N_2 \), then

\[
L - \epsilon < \inf_{n \geq m} a_n \leq a_m \leq \sup_{n \geq m} a_n < L + \epsilon.
\]

In particular,

\[
|a_m - L| < \epsilon
\]

if \(m > N \). Thus, \(\lim_{n \to \infty} a_n = L \).
Problem 2: Use this fact to prove every Cauchy sequence of real numbers converges.

Solution (4 points) First, recall the following lemma:

Lemma: Every decreasing sequence that is bounded below converges, and every increasing sequence that is bounded above converges.

Now, let \(\{a_n\} \) be a Cauchy sequence of real numbers. Then there exists \(M \) such that \(n, m > M \) implies \(|a_n - a_m| < 1 \). Putting \(m = M + 1 \), we observe \(a_{M+1} - 1 \leq a_n \leq a_{M+1} + 1 \) if \(n > M \). Put \(C = \max\{a_{M+1}, a_1, \ldots, a_M\} \) and put \(B = \min\{a_{M+1} - 1, a_1, \ldots, a_M\} \). Then

\[
B \leq a_n \leq C
\]

for all \(n \). In particular, if \(b_n = \sup_{m \geq n} a_m \) and \(c_n = \inf_{m \geq n} a_m \), then \(\{b_n\} \) is a decreasing sequence bounded below by \(B \) and \(\{c_n\} \) is an increasing sequence bounded above by \(C \). Thus, by the lemma \(\{b_n\} \) converges to \(L_1 \) and \(\{c_n\} \) converges to \(L_2 \).

To finish the proof, we again use that \(\{a_n\} \) is a Cauchy sequence. Given \(\epsilon > 0 \), there must exist \(N \) such that \(n, m > N \) implies \(|a_n - a_m| < \frac{\epsilon}{5} \). Moreover, there must exist \(M_1 > N \) such that \(|b_{M_1} - L_1| < \frac{\epsilon}{5} \) and \(M_2 > N \) such that \(|c_{M_2} - L_2| < \frac{\epsilon}{5} \). We can do this because \(\lim_{n \to \infty} b_n = L_1 \) and \(\lim_{n \to \infty} c_n = L_2 \). Choose \(n \geq M_1 \) such that \(|a_n - b_{M_1}| < \frac{\epsilon}{5} \) and choose \(m \geq M_2 \) such that \(|a_m - c_{M_2}| < \frac{\epsilon}{5} \). We can do this because \(b_{M_1} = \sup_{k \geq M_1} a_k \) and \(c_{M_2} = \inf_{k \geq M_2} a_k \). Now, we observe

\[
|L_1 - L_2| \leq |L_1 - b_{M_1}| + |b_{M_1} - a_n| + |a_n - a_m| + |a_m - c_{M_2}| + |c_{M_2} - L_2| < \epsilon.
\]

Since this is true for every \(\epsilon > 0 \), we conclude that \(L_1 = L_2 \). But, by the previous problem, if the liminf and the limsup are equal, then \(\lim_{n \to \infty} a_n \) exists. Therefore, every Cauchy sequence converges.

Problem 3: Suppose the series \(\sum_{n=1}^{\infty} a_n \) converges. Then \(\lim_{n \to \infty} a_n = 0 \).

Solution (4 points) Define \(s_m = \sum_{n=1}^{m} a_n \). Then by definition \(\{s_m\} \) converges. In particular, \(\{s_m\} \) is a Cauchy sequence (Problem 5 on the last practice exam). Thus, given \(\epsilon > 0 \), there exists \(N \) such that \(m, n > N \) implies \(|s_n - s_m| < \epsilon \). If we choose \(n = m + 1 \), then we get

\[
|a_m| = |s_{m+1} - s_m| < \epsilon
\]

whenever \(m > N + 1 \). We conclude \(\lim_{m \to \infty} a_m = 0 \).
Problem 4: A function \(f \) on \(\mathbb{R} \) is compactly supported if there exists a constant \(B > 0 \) such that \(f(x) = 0 \) if \(|x| \geq B\). If \(f \) and \(g \) are two differentiable, compactly supported functions on \(\mathbb{R} \), then we define

\[
(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy.
\]

Prove (i) \(f * g = g * f \) and (ii) \(f' * g = f * g' \).

Solution (4 points) a) Using the substitution \(u = x - y \), we have

\[
\int_{-t}^{t} f(x - y)g(y)dy = -\int_{x-t}^{x+t} f(u)g(x - u)du = \int_{x-t}^{x+t} f(u)g(x - u)du.
\]

Using that \(f \) is compactly supported, choose \(B \) such that \(f(u) = 0 \) if \(|u| > B\). Thus, if \(t > B + |x| \), then

\[
\int_{x-t}^{x+t} f(u)g(x - u)du = \int_{-B}^{x-t} f(u)g(x - u)du + \int_{x-t}^{B} f(u)g(x - u)du + \int_{B}^{x+t} f(u)g(x - u)du.
\]

The first and third terms are zero since \(f(u) \) is zero whenever \(u < -B \) or \(u > B \). Hence, our integral becomes

\[
\int_{-B}^{B} f(u)g(x - u)du.
\]

Similarly,

\[
\int_{-t}^{t} g(x - u)f(u)du = \int_{-B}^{B} g(x - u)f(u)du
\]

if \(t > B \). And we have

\[
(f * g)(x) = \lim_{t \to \infty} \int_{x-t}^{x+t} f(u)g(x - u)du = \int_{-B}^{B} f(u)g(x - u)du
\]

\[
= \lim_{t \to \infty} \int_{-t}^{t} g(x - u)f(u)du = (g * f)(x).
\]

b) Integration by parts tells us

\[
\int_{-t}^{t} f'(x - y)g(y)dy = -f(x - y)g(y)\bigg|_{-t}^{t} + \int_{-t}^{t} f(x - y)g'(y)dy.
\]
The limit of the first term on the right as $t \to \infty$ is
\[
\lim_{t\to\infty} \left(-f(x-t)g(t) + f(x+t)g(-t) \right) = 0
\]
since $g(t) = 0$ and $g(-t) = 0$ if $t > B'$ for some $B' > 0$. Thus,
\[
(f' \ast g)(x) = \lim_{t \to \infty} \int_{-t}^{t} f'(x-y)g(y) dy = \lim_{t \to \infty} \int_{-t}^{t} f(x-y)g'(y) dy = (f \ast g')(x).
\]
Applying part (a), we get $$(f' \ast g)(x) = (f \ast g')(x) = (g' \ast f)(x)$$ as desired.

Problem 5: Determine whether the series diverge, converge conditionally, or converge absolutely.

(a) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+100}$

(b) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{2n+100}{3n+1} \right)^n$.

Solution (4 points) (a) Consider the function $f(x) = \frac{\sqrt{x}}{x+100}$. Note

$$f'(x) = \frac{1}{2\sqrt{x}(x+100)} - \frac{\sqrt{x}}{(x+100)^2}.$$

One observes $f'(x) < 0$ if $x > 100$. Hence, f is monotonically decreasing when $x > 100$. Moreover, its easy to see $\lim_{x \to \infty} f(x) = 0$. Now, we break up our sum into

$$\sum_{n=1}^{100} (-1)^n \frac{\sqrt{n}}{n+100} + \sum_{n=101}^{\infty} (-1)^n \frac{\sqrt{n}}{n+100}.$$

The first term is a finite sum and the second term converges by Leibniz’s rule (Thm. 10.14). Thus, our series converges.

However, our series does not converge absolutely. To see this, let $a_n = \frac{n}{n+100}$, $b_n = \frac{1}{\sqrt{n}}$, and note $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$. By example one on page 398, we know that $\sum b_n$ diverges. Hence, by theorem 10.9, $\sum a_n$ diverges as well.

(b) This sum converges absolutely. Let $a_n = \left(\frac{2n+100}{3n+1} \right)^n$ and $b_n = \left(\frac{2}{3} \right)^n$. Observe $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ and $\sum b_n$ converges since it is a geometric series. Hence, by theorem 10.9, $\sum a_n$ converges as well.

Problem 6: Prove $\sum_{n=1}^{\infty} a_n$ converges absolutely if $a_n = 1/n$ if n is a square and $a_n = 1/n^2$ otherwise.
Solution (4 points) Let \(s_N = \sum_{n=1}^{N} a_n \) be the \(n \)th partial sum. Note
\[
 s_N = \sum_{n \leq N} \frac{1}{n^2} + \sum_{m \leq \sqrt{N}} \frac{1}{m^2} \leq \sum_{n \leq N} \frac{2}{n^2}.
\]
But, \(\sum_{n \leq N} \frac{2}{n^2} \leq 2\sum_{n=1}^{\infty} \frac{1}{n^2} \). This is a finite number, \(C \), by example one on page 398. Since the partial sums \(s_N \) are an increasing sequence, bounded by \(C \), they must converge by our lemma in problem 2.

Problem 7: (a) Prove that if \(\sum_{n=1}^{\infty} |a_n| \) converges, then \(\sum_{n=1}^{\infty} a_n^2 \) converges. Give a counterexample in which \(\sum_{n=1}^{\infty} a_n^2 \) converges but \(\sum_{n=1}^{\infty} |a_n| \) diverges.

(b) Find all real \(c \) for which the series \(\sum_{n=1}^{\infty} \frac{(n!)^c}{(3n)!} \) converges.

Solution (4 points) (a) Suppose \(\sum_{n=1}^{\infty} |a_n| \) converges. By problem 3, we must have \(\lim_{n \to \infty} |a_n| = 0 \). Thus, there exists \(N \) such that \(|a_n| < 1 \) whenever \(n > N \). In particular, we see \(a_n^2 = |a_n|^2 < |a_n| \) if \(n > N \). Splitting up our series, we have
\[
\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{N} a_n^2 + \sum_{n=N+1}^{\infty} a_n^2.
\]
The first sum is finite because it is a finite sum. We may compare the second series term by term to \(\sum_{n=N+1}^{\infty} |a_n| \), which converges by hypothesis.

On the other hand, \(\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^2 \) converges by example one on the top of page 398. Yet, \(\sum_{n=1}^{\infty} \frac{1}{n} \) is the divergent harmonic series.

(b) Let \(b_n = \frac{(n!)^c}{(3n)!} \). First, we apply the ratio test, and we get
\[
\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \lim_{n \to \infty} \frac{(n+1)^c}{(3n+3)(3n+2)(3n+1)}.
\]
This limit is zero and the series converges if \(c < 3 \). The limit is \(\infty \) and the series diverges if \(c > 3 \). For \(c = 3 \), we analyze each term. Note
\[
\frac{(n!)^3}{(3n)!} = 1 \prod_{k=1}^{n} \frac{k}{n+k} \prod_{k=1}^{n} \frac{k}{2n+k} \leq \frac{1}{2^n}
\]
since \(2k \leq n+k \) and \(k \leq 2n+k \). But, \(\sum_{n=1}^{\infty} \frac{1}{2^n} \) converges because it is a geometric series. Thus, by the comparison test (Thm. 10.8), we conclude that our series converges when \(c = 3 \).
Problem 8: (a) Prove that \(\lim_{n \to \infty} \sum_{k=qn}^{pn} \frac{1}{k} = \log(p/q) \). (b) Show the series \(1 + \frac{1}{3} + \frac{1}{5} - \frac{1}{1/2} - \frac{1}{4} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} - \frac{1}{8} \ldots \) converges to \(\log 2 + \frac{1}{2} \log(3/2) \).

Solution (4 points) (a) We let \(\epsilon > 0 \). First choose \(N \) such that \(\frac{1}{pn} < \epsilon / 2 \) for all \(n \geq N \). Then for all \(n \geq N \),

\[
\left(\sum_{k=qn}^{pn} \frac{1}{k} - \sum_{k=qn}^{pn-1} \frac{1}{k} \right) = \frac{1}{pn} < \epsilon / 2.
\]

Now, choose \(M \) such that \(\frac{p-q}{np} < \epsilon / 2 \) for all \(n \geq M \). As the function \(f(x) = 1/x \) is monotonically decreasing, we get the estimate

\[
\left(\sum_{k=qn}^{pn} \frac{1}{k} - \int_{qn}^{pn} \frac{dx}{x} \right) \leq \frac{1}{qn} - \frac{1}{pn} = \frac{p-q}{np} < \epsilon / 2.
\]

Now, choose \(\tilde{N} = \max N, M \) and observe \(\int_{qn}^{pn} \frac{dx}{x} = \log(x)|_{qn}^{pn} = \log(p/q) \). Thus, for all \(n \geq \tilde{N} \), the triangle inequality and our work above implies:

\[
\left| \sum_{k=qn}^{pn} \frac{1}{k} - \log(p/q) \right| \leq \left| \sum_{k=qn}^{pn} \frac{1}{k} - \sum_{k=qn}^{pn-1} \frac{1}{k} \right| + \left| \sum_{k=qn}^{pn-1} \frac{1}{k} - \log(p/q) \right| < \epsilon / 2 + \epsilon / 2 = \epsilon.
\]

(b) We begin by observing that

\[
s_{5m} = \sum_{k=1}^{3m} \frac{1}{2k-1} - \sum_{k=1}^{2m} \frac{1}{2m}.
\]

Now,

\[
\sum_{k=1}^{3m} \frac{1}{2k-1} = \sum_{k=1}^{6m} \frac{1}{k} - \sum_{k=1}^{3m} \frac{1}{2k} = \sum_{k=1}^{6m} \frac{1}{k} - \sum_{k=1}^{3m} \frac{1}{k} + \sum_{k=1}^{3m} \frac{1}{2k}
\]

and thus

\[
s_{5m} = \sum_{k=3m+1}^{6m} \frac{1}{k} + \frac{1}{2} \sum_{k=2m+1}^{3m} \frac{1}{k} = \sum_{k=3m}^{6m} \frac{1}{k} + \frac{1}{2} \sum_{k=2m}^{3m} \frac{1}{k} + \left(\frac{1}{3m} + \frac{1}{2m} \right).
\]

Thus \(\lim_{m \to \infty} s_{5m} = \log(6m/3m) + \frac{1}{2} \log(3m/2m) = \log 2 + \frac{1}{2} \log(3/2) \).
18.014 Calculus with Theory
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.