Square roots, and the existence of irrational numbers.

Definition. If \(b^2 = a \), then we say that \(b \) is a square root of \(a \).

A negative number has no square root (see Theorem I.20), and the number 0 has only one square root, namely 0. We shall show that a positive real number has exactly two square roots, one positive and one negative.

Theorem. Let \(a > 0 \). Then there is a number \(b > 0 \) such that \(b^2 = a \).

Proof. Step 1. Let \(x \) and \(y \) be positive numbers. Then \(x < y \) if and only if \(x^2 < y^2 \).

If \(x < y \), we multiply both sides, first by \(x \) and then by \(y \), to obtain the inequalities

\[
x \cdot x < y \cdot x \quad \text{and} \quad y \cdot x < y \cdot y.
\]

Thus \(x^2 < y^2 \). Conversely if \(x^2 < y^2 \), then it cannot be true that \(x = y \) (for that would imply \(x^2 = y^2 \)), or that \(y < x \) (for that would imply, by what we just proved, that \(y^2 < x^2 \)). Hence we must have \(x < y \).

Step 2. We construct \(b \) as follows: Consider the set

\[
S = \{ x \mid x > 0 \text{ and } x^2 < a \}.
\]

The set \(S \) is nonempty; indeed if \(x \) is a number such that \(0 < x \leq 1 \) and \(x < a \), then

\[
x^2 < ax \leq a \cdot 1 = a,
\]

so that \(x \) is in \(S \). Furthermore, \(S \) is bounded above; indeed, \(1 + a \) is an upper bound on \(S \).
For if x is in S, then $x^2 < a$; since
\[a < 1 + 2a + a^2 = (1+a)^2, \]
it follows from Step 1 that $x < 1 + a$.

Let b denote the supremum of S; we show that $b^2 = a$. We verify this fact by showing that neither inequality $b^2 < a$ or $b^2 > a$ can hold.

Step 3. Assume first that $b^2 < a$. We shall show that there is a positive number h such that $(b+h)^2 < a$. It then follows that $b + h$ belongs to S (by definition of S), contradicting the fact that b is an upper bound for S.

To find h, we proceed as follows: The inequality $(b+h)^2 < a$ is equivalent to the inequality
\[h(2b+h) < a-b^2. \]
Now $a - b^2$ is positive; it seems reasonable that if we take h to be sufficiently small, this inequality will hold. Specifically, we first specify that $h \leq 1$; then we have
\[h(2b+h) \leq h(2b+1). \]
It is then easy to see how small h should be; if we choose $h < (a-b^2)/(2b+1)$, then
\[h(2b+1) < a - b^2 \]
and we are finished.

Step 4. Now assume that $b^2 > a$. We shall show that there is a number h such that $0 < h < b$ and $(b-h)^2 > a$. It follows that $b - h$ is an upper bound for S: For
if \(x \) is in \(S \), then \(a > x^2 \), so that \((b-h)^2 > x^2\), whence by Step 1, \(b - h > x \). This contradicts the fact that \(b \) is the least upper bound for \(S \).

To find \(h \), we proceed as follows: The inequality \((b-h)^2 > a\) is equivalent to the inequality
\[
h(2b-h) < b^2 - a.
\]
Now \(b^2 - a \) is positive; it seems reasonable that if \(h \) is sufficiently small, this inequality will hold. Our first requirement is that \(0 < h < b \). Then we note that \(h(2b-h) = 2hb - h^2 < 2hb \). It is now easy to see how small \(h \) should be; if we choose \(h < (b^2 - a)/2b \), then
\[
2hb < b^2 - a
\]
and we are finished. \(\square\)

Corollary. If \(a > 0 \), then \(a \) has exactly two square roots.

We denote the positive square root of \(a \) by \(\sqrt{a} \).

Proof. Let \(b > 0 \) and \(b^2 = a \). Then \((-b)^2 = a \). Thus \(a \) has at least two square roots, \(b \) and \(-b \). Conversely, if \(c \) is any square root of \(a \), then \(c^2 = a \), whence
\[
(b+c)(b-c) = b^2 - c^2 = 0.
\]
It follows that \(c = -b \) or \(c = b \). \(\square\)

We now demonstrate the existence of irrational numbers.

Theorem. Let \(a \) be a positive integer; let \(b = \sqrt{a} \). Then either \(b \) is a positive integer or \(b \) is irrational.

Proof. Suppose that \(b = \sqrt{a} \) and \(b \) is a rational number that is not an integer. We derive a contradiction.

Let us write \(b = m/n \), where \(m \) and \(n \) are positive integers and \(n \) is as small as possible. (I.e., we choose \(n \) to be the smallest positive integer such that \(nb \) is an integer, and we set \(m = nb \).)

Choose \(q \) to be the unique integer such that
\[q < \frac{m}{n} < q+1. \]

Then
\[qn < m < qn + n, \text{ or} \]

\[(*) \]
\[0 < m - qn < n. \]

We compute as follows:
\[(\frac{m}{n})^2 = b^2 = a, \]
\[m^2 = n^2 a \]
\[m(m - qn) = n(na - qm). \]

Then using \((*)\), we can write
\[b = \frac{m}{n} = \frac{na - qm}{m - qn}. \]

This equation expresses \(b\) as a ratio of positive integers; and by \((*)\) the denominator is less than \(n\). Thus we reach a contradiction. \(\Box\)

\begin{center}
\framebox{Corollary. \(\sqrt{2}\) is irrational.}
\end{center}

\textit{Proof.} Let \(b = \sqrt{2}\). Then \(b\) cannot be an integer, for the square of 1 equals 1 while the square of any integer greater than 1 is at least 4. It follows that \(b\) is irrational. \(\Box\)

The same proof shows that the number \(\sqrt{n}\) is irrational whenever \(n\) is a positive integer less than 100 that is not one of the integers 1, 4, 9, 16, 25, 36, 49, 64, or 81.