SOLUTIONS TO 18.01 EXERCISES

Unit 1. Differentiation

1A. Graphing

1A-1,2 a) \(y = (x - 1)^2 - 2 \)

b) \(y = 3(x^2 + 2x) + 2 = 3(x + 1)^2 - 1 \)

1A-3 a) \(f(-x) = \frac{(-x)^3 - 3x}{1 - (-x)^4} = \frac{-x^3 - 3x}{1 - x^4} = -f(x) \), so it is odd.

b) \((\sin(-x))^2 = (\sin x)^2 \), so it is even.

c) odd, so it is odd.

d) \((1 - x)^4 \neq \pm (1 + x)^4 \): neither.

e) \(J_0((-x)^2) = J_0(x^2) \), so it is even.

1A-4 a) \(p(x) = p_e(x) + p_o(x) \), where \(p_e(x) \) is the sum of the even powers and \(p_o(x) \) is the sum of the odd powers

b) \(f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} \)

\(F(x) = \frac{f(x) + f(-x)}{2} \) is even and \(G(x) = \frac{f(x) - f(-x)}{2} \) is odd because

COPYRIGHT DAVID JERISON AND MIT 1996, 2003
E. Solutions to 18.01 Exercises 1. Differentiation

\[F(-x) = \frac{f(-x) + f(-(-x))}{2} = F(x); \quad G(-x) = \frac{f(x) - f(-x)}{2} = -G(-x). \]

c) Use part b:

\[\frac{1}{x + a} + \frac{1}{-x + a} = \frac{2a}{(x + a)(-x + a)} = \frac{2a}{a^2 - x^2} \quad \text{even} \]

\[\frac{1}{x + a} - \frac{1}{-x + a} = \frac{-2x}{(x + a)(-x + a)} = \frac{-2x}{a^2 - x^2} \quad \text{odd} \]

\[\Rightarrow \frac{1}{x + a} = \frac{a}{a^2 - x^2} - \frac{x}{a^2 - x^2} \]

1A-5 a) \[y = \frac{x - 1}{2x + 3} \]
Crossmultiply and solve for \(x \), getting \(x = \frac{3y + 1}{1 - 2y} \), so the inverse function is \[\frac{3x + 1}{1 - 2x} \].

b) \[y = x^2 + 2x = (x + 1)^2 - 1 \]

(Restrict domain to \(x \leq -1 \), so when it’s flipped about the diagonal \(y = x \), you’ll still get the graph of a function.) Solving for \(x \), we get \(x = \sqrt{y + 1} - 1 \), so the inverse function is \(y = \sqrt{x + 1} - 1 \).

1A-6 a) \(A = \sqrt{1 + 3} = 2 \), \(\tan c = \frac{\sqrt{3}}{1} \), \(c = \frac{\pi}{3} \). So \(\sin x + \sqrt{3} \cos x = 2 \sin(x + \frac{\pi}{3}) \).

b) \(\sqrt{2} \sin(x - \frac{\pi}{4}) \)

1A-7 a) \(3 \sin(2x - \pi) = 3 \sin(2x - \frac{\pi}{2}) \), amplitude 3, period \(\pi \), phase angle \(\pi/2 \).

b) \(-4 \cos(x + \frac{\pi}{2}) = 4 \sin x \) amplitude 4, period \(2\pi \), phase angle 0.
1. Differentiation

E. Solutions to 18.01 Exercises

1A-8

\[f(x) \text{ odd} \implies f(0) = -f(0) \implies f(0) = 0. \]

So \(f(c) = f(2c) = \cdots = 0 \), also (by periodicity, where \(c \) is the period).

1A-9

c) The graph is made up of segments joining \((0, -6)\) to \((4, 3)\) to \((8, -6)\). It repeats in a zigzag with period 8. * This can be derived using:

\[
\begin{align*}
(1) & \quad x/2 - 1 = -1 \implies x = 0 \quad \text{and} \quad g(0) = 3f(-1) - 3 = -6 \\
(2) & \quad x/2 - 1 = 1 \implies x = 4 \quad \text{and} \quad g(4) = 3f(1) - 3 = 3 \\
(3) & \quad x/2 - 1 = 3 \implies x = 8 \quad \text{and} \quad g(8) = 3f(3) - 3 = -6 \\
(4) & \quad \\
\end{align*}
\]

1B. Velocity and rates of change

1B-1 a) \(h = \) height of tube = \(400 - 16t^2 \).

average speed \(\frac{h(2) - h(0)}{2} = \frac{(400 - 16 \cdot 2^2) - 400}{2} = -32 \text{ft/sec} \)

(The minus sign means the test tube is going down. You can also do this whole problem using the function \(s(t) = 16t^2 \), representing the distance down measured from the top. Then all the speeds are positive instead of negative.)

b) Solve \(h(t) = 0 \) (or \(s(t) = 400 \)) to find landing time \(t = 5 \). Hence the average speed for the last two seconds is

\[
\frac{h(5) - h(3)}{2} = \frac{0 - (400 - 16 \cdot 3^2)}{2} = -128 \text{ft/sec}
\]
E. Solutions to 18.01 Exercises

1. Differentiation

c)\[h(t) - h(5) \]
\[\frac{h(t) - h(5)}{t - 5} = \frac{400 - 16t^2 - 0}{t - 5} = \frac{16(5 - t)(5 + t)}{t - 5} \]
\[= -16(5 + t) \rightarrow -160 \text{ft/sec as } t \rightarrow 5 \]

1B-2 A tennis ball bounces so that its initial speed straight upwards is \(b \) feet per second. Its height \(s \) in feet at time \(t \) seconds is

\[s = bt - 16t^2 \]

a)\[s(t + h) - s(t) \]
\[= \frac{bt + bh - 16(t + h)^2 - (bt - 16t^2)}{h} \]
\[= \frac{bt + bh - 16t^2 - 32th - 16h^2 - bt + 16t^2}{h} \]
\[= \frac{bh - 32th - 16h^2}{h} \]
\[= b - 32t - 16h \rightarrow b - 32t \text{ as } h \rightarrow 0 \]

Therefore, \(v = b - 32t \).

b) The ball reaches its maximum height exactly when the ball has finished going up. This is time at which \(v(t) = 0 \), namely, \(t = b/32 \).

c) The maximum height is \(s(b/32) = b^2/64 \).

d) The graph of \(v \) is a straight line with slope \(-32\). The graph of \(s \) is a parabola with maximum at place where \(v = 0 \) at \(t = b/32 \) and landing time at \(t = b/16 \).

\[\text{graph of velocity} \quad \text{graph of position} \]

\[\begin{array}{c}
\text{v} \\
\text{b} \\
b/32 \\
t
\end{array} \quad \begin{array}{c}
\text{s} \\
\text{b/32} \\
\text{b/16} \\
t
\end{array} \]

e) If the initial velocity on the first bounce was \(b_1 = b \), and the velocity of the second bounce is \(b_2 \), then \(b_2^2/64 = (1/2)b_1^2/64 \). Therefore, \(b_2 = b_1/\sqrt{2} \). The second bounce is at \(b_1/16 + b_2/16 \). (continued →)
1. Differentiation

E. Solutions to 18.01 Exercises

f) If the ball continues to bounce then the landing times form a geometric series

\[b_1/16 + b_2/16 + b_3/16 + \cdots = b/16 + b/16\sqrt{2} + b/16(\sqrt{2})^2 + \cdots \]

\[= (b/16)(1 + (1/\sqrt{2}) + (1/\sqrt{2})^2 + \cdots) \]

\[= b/16 \quad 1 - (1/\sqrt{2}) \]

Put another way, the ball stops bouncing after \(1/(1 - (1/\sqrt{2})) \approx 3.4\) times the length of time the first bounce.

1C. Slope and derivative.

1C-1 a)

\[\frac{\pi(r + h)^2 - \pi r^2}{h} = \frac{\pi(r^2 + 2rh + h^2) - \pi r^2}{h} = \frac{\pi(2rh + h^2)}{h} \]

\[= \pi(2r + h) \]

\[\to 2\pi r \text{ as } h \to 0 \]

b)

\[\frac{(4\pi/3)(r + h)^3 - (4\pi/3)r^3}{h} = \frac{(4\pi/3)(r^3 + 3r^2h + 3rh^2 + h^3) - (4\pi/3)r^3}{h} \]

\[= \frac{(4\pi/3)(3r^2h + 3rh^2 + h^3)}{h} \]

\[= (4\pi/3)(3r^2 + 3rh + h^2) \]

\[\to 4\pi r^2 \text{ as } h \to 0 \]

1C-2 \(\frac{f(x) - f(a)}{x - a} = \frac{(x - a)g(x) - 0}{x - a} = g(x) \to g(a) \text{ as } x \to a. \)

1C-3 a)

\[\frac{1}{h} \left[\frac{1}{2(x + h)} + 1 - \frac{1}{2x + 1} \right] = \frac{1}{h} \left[\frac{2x + 1 - (2(x + h) + 1)}{(2(x + h) + 1)(2x + 1)} \right] \]

\[= \frac{1}{h} \left[\frac{-2h}{(2(x + h) + 1)(2x + 1)} \right] \]

\[= \frac{-2}{(2(x + h) + 1)(2x + 1)} \]

\[\to \frac{-2}{(2x + 1)^2} \text{ as } h \to 0 \]
b)
\[
\frac{2(x + h)^2 + 5(x + h) + 4 - (2x^2 + 5x + 4)}{h} = \frac{2x^2 + 4xh + 2h^2 + 5x + 5h - 2x^2 - 5x}{h} \\
= \frac{4xh + 2h^2 + 5h}{h} = 4x + 2h + 5 \\
\rightarrow 4x + 5 \text{ as } h \to 0
\]

(25)

(26)

(27)

c)
\[
\frac{1}{h} \left[\frac{1}{(x + h)^2 + 1} - \frac{1}{x^2 + 1} \right] = \frac{1}{h} \left[\frac{(x^2 + 1) - ((x + h)^2 + 1)}{((x + h)^2 + 1)(x^2 + 1)} \right] \\
= \frac{1}{h} \left[\frac{x^2 + 1 - x^2 - 2xh - h^2 - 1}{((x + h)^2 + 1)(x^2 + 1)} \right] \\
= \frac{1}{h} \left[\frac{-2xh - h^2}{((x + h)^2 + 1)(x^2 + 1)} \right] \\
= \frac{-2x}{(x^2 + 1)^2} \text{ as } h \to 0
\]

(28)

(29)

(30)

(31)

(32)

d) Common denominator:
\[
\frac{1}{h} \left[\frac{1}{\sqrt{x + h} + \sqrt{x}} - \frac{1}{\sqrt{x}} \right] = \frac{1}{h} \left[\frac{\sqrt{x} - \sqrt{x + h}}{\sqrt{x} \sqrt{x + h}} \right]
\]
Now simplify the numerator by multiplying numerator and denominator by \(\sqrt{x} + \sqrt{x + h}\), and using \((a - b)(a + b) = a^2 - b^2\):
\[
\frac{1}{h} \left[\frac{(\sqrt{x})^2 - (\sqrt{x + h})^2}{\sqrt{x} \sqrt{x + h} \sqrt{x + h} \sqrt{x}} \right] = \frac{1}{h} \left[\frac{x - (x + h)}{\sqrt{x} \sqrt{x + h} \sqrt{x + h} \sqrt{x + h}} \right] \\
= \frac{1}{h} \left[\frac{-h}{\sqrt{x} \sqrt{x + h} \sqrt{x + h} \sqrt{x + h}} \right] \\
= \left[\frac{-1}{\sqrt{x} \sqrt{x + h} \sqrt{x + h} \sqrt{x + h}} \right] \\
\rightarrow -\frac{1}{2(\sqrt{x})^3} = -\frac{1}{2}x^{-3/2} \text{ as } h \to 0
\]

(33)

(34)

(35)

(36)

e) For part (a), \(-2/(2x + 1)^2 < 0\), so there are no points where the slope is 1 or 0. For slope \(-1\),
\[
-2/(2x + 1)^2 = -1 \implies (2x + 1)^2 = 2 \implies 2x + 1 = \pm \sqrt{2} \implies x = -1/2 \pm \sqrt{2}/2
\]

For part (b), the slope is 0 at \(x = -5/4\), 1 at \(x = -1\) and \(-1\) at \(x = -3/2\).
1C-4 Using Problem 3,

\[\text{a) } f'(1) = -2/9 \text{ and } f(1) = 1/3, \text{ so } y = -(2/9)(x - 1) + 1/3 = (-2x + 5)/9 \]

\[\text{b) } f(a) = 2a^2 + 5a + 4 \text{ and } f'(a) = 4a + 5, \text{ so } \]
\[y = (4a + 5)(x - a) + 2a^2 + 5a + 4 = (4a + 5)x - 2a^2 + 4 \]

\[\text{c) } f(0) = 1 \text{ and } f'(0) = 0, \text{ so } y = 0(x - 0) + 1, \text{ or } y = 1. \]

\[\text{d) } f(a) = 1/\sqrt{a} \text{ and } f'(a) = -(1/2)a^{-3/2}, \text{ so } \]
\[y = -(1/2)a^{3/2}(x - a) + 1/\sqrt{a} = -a^{-3/2}x + (3/2)a^{-1/2} \]

1C-5 Method 1. \(y'(x) = 2(x - 1) \), so the tangent line through \((a, 1 + (a - 1)^2)\) is
\[y = 2(a - 1)(x - a) + 1 + (a - 1)^2 \]
In order to see if the origin is on this line, plug in \(x = 0 \) and \(y = 0 \), to get the following equation for \(a \).
\[0 = 2(a - 1)(-a) + 1 + (a - 1)^2 = -2a^2 + 2a + 1 + a^2 - 2a + 1 = -a^2 + 2 \]
Therefore \(a = \pm\sqrt{2} \) and the two tangent lines through the origin are
\[y = 2(\sqrt{2} - 1)x \text{ and } y = -2(\sqrt{2} + 1)x \]
(Because these are lines throught the origin, the constant terms must cancel: this is a good check of your algebra!)

Method 2. Seek tangent lines of the form \(y = mx \). Suppose that \(y = mx \) meets \(y = 1 + (x - 1)^2 \), at \(x = a \), then \(ma = 1 + (a - 1)^2 \). In addition we want the slope \(y'(a) = 2(a - 1) \) to be equal to \(m \), so \(m = 2(a - 1) \). Substituting for \(m \) we find
\[2(a - 1)a = 1 + (a - 1)^2 \]
This is the same equation as in method 1: \(a^2 - 2 = 0 \), so \(a = \pm\sqrt{2} \) and \(m = 2(\pm\sqrt{2} - 1) \), and the two tangent lines through the origin are as above,
\[y = 2(\sqrt{2} - 1)x \text{ and } y = -2(\sqrt{2} + 1)x \]

1D. Limits and continuity

1D-1 Calculate the following limits if they exist. If they do not exist, then indicate whether they are \(+\infty, -\infty \) or undefined.

\[\text{a) } -4 \]

\[\text{b) } 8/3 \]
c) undefined (both $\pm \infty$ are possible)

d) Note that $2 - x$ is negative when $x > 2$, so the limit is $-\infty$

e) Note that $2 - x$ is positive when $x < 2$, so the limit is $+\infty$ (can also be written ∞)

$$f) \frac{4x^2}{x-2} = \frac{4x}{1-(2/x)} \to \infty \quad \text{as} \quad x \to \infty$$

$$g) \frac{4x^2}{x-2} - 4x = \frac{4x^2 - 4x(x-2)}{x-2} = \frac{8x}{x-2} = \frac{8}{1-(2/x)} \to 8 \quad \text{as} \quad x \to \infty$$

$$i) \frac{x^2 + 2x + 3}{3x^2 - 2x + 4} = \frac{1 + (2/x) + (3/x^2)}{3 - (2/x) + 4/x^2} \to \frac{1}{3} \quad \text{as} \quad x \to \infty$$

$$j) \frac{x-2}{x^2-4} = \frac{x-2}{(x-2)(x+2)} = \frac{1}{x+2} \to \frac{1}{4} \quad \text{as} \quad x \to 2$$

1D-2

a) $\lim_{x \to 0} \sqrt{x} = 0$

b) $\lim_{x \to 1^+} \frac{1}{x-1} = \infty$

$\lim_{x \to 1^-} \frac{1}{x-1} = -\infty$

c) $\lim_{x \to 1} (x-1)^{-4} = \infty$ (left and right hand limits are same)

d) $\lim_{x \to 0} \mid \sin x \mid = 0$ (left and right hand limits are same)

e) $\lim_{x \to 0^+} \frac{|x|}{x} = 1$

$\lim_{x \to 0^-} \frac{|x|}{x} = -1$

1D-3

a) $x = 2$ removable

$x = -2$ infinite

b) $x = 0, \pm \pi, \pm 2\pi, ...$ infinite

c) $x = 0$ removable

d) $x = 0$ removable

e) $x = 0$ jump

f) $x = 0$ removable
1D-5 a) for continuity, want $ax + b = 1$ when $x = 1$. Ans.: all a, b such that $a + b = 1$

b) $\frac{dy}{dx} = \frac{d(x^2)}{dx} = 2x = 2$ when $x = 1$. We have also $\frac{d(ax + b)}{dx} = a$. Therefore, to make $f'(x)$ continuous, we want $a = 2$.

Combining this with the condition $a + b = 1$ from part (a), we get finally $b = -1, a = 2$.

1D-6 a) $f(0) = 0^2 + 4 \cdot 0 + 1 = 1$. Match the function values:

$$f(0^-) = \lim_{x \to 0} ax + b = b,$$
so $b = 1$ by continuity.

Next match the slopes:

$$f'(0^+) = \lim_{x \to 0} 2x + 4 = 4$$
and $f'(0^-) = a$. Therefore, $a = 4$, since $f'(0)$ exists.

b) $f(1) = 1^2 + 4 \cdot 1 + 1 = 6$ and $f(1^-) = \lim_{x \to 1} ax + b = a + b$

Therefore continuity implies $a + b = 6$. The slope from the right is

$$f'(1^+) = \lim_{x \to 1} 2x + 4 = 6$$

Therefore, this must equal the slope from the left, which is a. Thus, $a = 6$ and $b = 0$.

1D-7

$$f(1) = c1^2 + 4 \cdot 1 + 1 = c + 5$$ and $f(1^-) = \lim_{x \to 1} ax + b = a + b$

Therefore, by continuity, $c + 5 = a + b$. Next, match the slopes from left and right:

$$f'(1^+) = \lim_{x \to 1} 2cx + 4 = 2c + 4$$ and $f'(1^-) = \lim_{x \to 1} a = a$

Therefore,

$$a = 2c + 4$$ and $b = -c + 1$.

1D-8

a) $f(0) = \sin(2 \cdot 0) = 0$ and $f(0^+) = \lim_{x \to 0} ax + b = b$

Therefore, continuity implies $b = 0$. The slope from each side is

$$f'(0^-) = \lim_{x \to 0} 2 \cos(2x) = 2$$ and $f'(0^+) = \lim_{x \to 0} a = a$

Therefore, we need $a \neq 2$ in order that f not be differentiable.
b)

\[f(0) = \cos(2 \cdot 0) = 1 \text{ and } f(0^+) = \lim_{x \to 0} ax + b = b \]

Therefore, continuity implies \(b = 1 \). The slope from each side is

\[f'(0^-) = \lim_{x \to 0} -2\sin(2x) = 0 \text{ and } f'(0^+) = \lim_{x \to 0} a = a \]

Therefore, we need \(a \neq 0 \) in order that \(f \) not be differentiable.

1D-9 There cannot be any such values because every differentiable function is continuous.

1E: Differentiation formulas: polynomials, products, quotients

1E-1 Find the derivative of the following polynomials

a) \(10x^9 + 15x^4 + 6x^2 \)

b) \(0 \) (\(e^2 + 1 \approx 8.4 \) is a constant and the derivative of a constant is zero.)

c) \(1/2 \)

d) By the product rule: \((3x^2 + 1)(x^5 + x^2) + (x^3 + x)(5x^4 + 2x) = 8x^7 + 6x^5 + 5x^4 + 3x^2 \). Alternatively, multiply out the polynomial first to get \(x^8 + x^6 + x^5 + x^3 \) and then differentiate.

1E-2 Find the antiderivative of the following polynomials

a) \(ax^2/2 + bx + c \), where \(a \) and \(b \) are the given constants and \(c \) is a third constant.

b) \(x^7/7 + (5/6)x^6 + x^4 + c \)

c) The only way to get at this is to multiply it out: \(x^6 + 2x^3 + 1 \). Now you can take the antiderivative of each separate term to get

\[\frac{x^7}{7} + \frac{x^4}{2} + x + c \]

Warning: The answer is not \((1/3)(x^3 + 1)^3 \). (The derivative does not match if you apply the chain rule, the rule to be treated below in E4.)

1E-3 \(y' = 3x^2 + 2x - 1 = 0 \implies (3x - 1)(x + 1) = 0 \). Hence \(x = 1/3 \) or \(x = -1 \) and the points are \((1/3, 49/27)\) and \((-1, 3)\)
1F. Chain rule, implicit differentiation

1F-1 a) Let \(u = (x^2 + 2) \)
\[
\frac{du}{dx} = \frac{du}{dx} (x^2 + 2) = (2x)(2u) = 4x(x^2 + 2) = 4x^3 + 8x
\]
Alternatively,
\[
\frac{d}{dx} (x^2 + 2)^2 = \frac{d}{dx} (x^4 + 4x^2 + 4) = 4x^3 + 8x
\]
b) Let \(u = (x^2 + 2) \); then \(\frac{du}{dx} u^{100} = \frac{du}{dx} u^{100} = (2x)(100u^{99}) = (200x)(x^2 + 2)^{99} \).

1F-2 Product rule and chain rule:
\[
10x^9(x^2 + 1)^{10} + x^{10}[10(x^2 + 1)^{9}(2x)] = 10(3x^2 + 1)x^9(x^2 + 1)^9
\]

1F-3 \(y = x^{1/n} \) \(\Rightarrow \) \(y^n = x \) \(\Rightarrow \) \(ny^{n-1} y' = 1 \). Therefore,
\[
y' = \frac{1}{ny^{n-1}} = \frac{1}{n} y^{-n} = \frac{1}{n} x^{1/n - 1}
\]

1F-4 \((1/3)x^{-2/3} + (1/3)y^{-2/3} y' = 0 \) implies
\[
y' = -x^{-2/3} y^{2/3}
\]
Put \(u = 1 - x^{1/3} \). Then \(y = u^3 \), and the chain rule implies
\[
\frac{dy}{dx} = 3u^2 \frac{du}{dx} = 3(1 - x^{1/3})^2 \left(-\frac{1}{3}x^{-2/3} \right) = -x^{-2/3}(1 - x^{1/3})^2
\]
The chain rule answer is the same as the one using implicit differentiation because

\[y = (1 - x^{1/3})^3 \implies y^{2/3} = (1 - x^{1/3})^2 \]

1F-5 Implicit differentiation gives \(\cos x + y' \cos y = 0 \). Horizontal slope means \(y' = 0 \), so that \(\cos x = 0 \). These are the points \(x = \pi/2 + k\pi \) for every integer \(k \). Recall that \(\sin(\pi/2 + k\pi) = (-1)^k \), i.e., 1 if \(k \) is even and \(-1 \) if \(k \) is odd. Thus at \(x = \pi/2 + k\pi, \pm 1 + \sin y = 1/2, \) or \(\sin y = \mp 1 + 1/2 \). But \(\sin y = 3/2 \) has no solution, so the only solutions are when \(k \) is even and in that case \(\sin y = -1 + 1/2 \), so that \(y = -\pi/6 + 2n\pi \) or \(y = 7\pi/6 + 2n\pi \). In all there are two grids of points at the vertices of squares of side \(2\pi \), namely the points

\((\pi/2 + 2k\pi, -\pi/6 + 2n\pi) \) and \((\pi/2 + 2k\pi, 7\pi/6 + 2n\pi); \quad k, n \) any integers.

1F-6 Following the hint, let \(z = -x \). If \(f \) is even, then \(f(x) = f(z) \). Differentiating and using the chain rule:

\[f'(x) = f'(z)(dz/dx) = -f'(z) \quad \text{because} \quad dz/dx = -1 \]

But this means that \(f' \) is odd. Similarly, if \(g \) is odd, then \(g(x) = -g(z) \). Differentiating and using the chain rule:

\[g'(x) = -g'(z)(dz/dx) = g'(z) \quad \text{because} \quad dz/dx = -1 \]

1F-7

a) \[\frac{dD}{dx} = \frac{1}{2}((x - a)^2 + y_0^2)^{-1/2}(2(x - a)) = \frac{x - a}{\sqrt{(x - a)^2 + y_0^2}} \]

b) \[\frac{dm}{dv} = m_0 \cdot \frac{-1}{2}(1 - \frac{v^2}{c^2})^{-3/2} \cdot \frac{-2v}{c^2} = \frac{m_0v}{c^2(1 - \frac{v^2}{c^2})^{3/2}} \]

c) \[\frac{dF}{dr} = mg \cdot \frac{(\frac{3}{2})(1 + r^2)^{-5/2}}{(1 + r^2)^{5/2}} \cdot 2r = \frac{-3mg}{(1 + r^2)^{3/2}} \]

d) \[\frac{dQ}{dt} = at \cdot \frac{-6bt}{(1 + bt^2)^4} + \frac{a}{(1 + bt^2)^3} = \frac{a(1 - 5bt^2)}{(1 + bt^2)^4} \]

1F-8

a) \(V = \frac{1}{3}\pi r^2 h \implies 0 = \frac{1}{3}\pi(2rr'h + r^2) \implies r' = \frac{-r^2}{2rh} = \frac{-r}{2h} \)

b) \(PV^c = nRT \implies P'V^c + P \cdot cV^{c-1} = 0 \implies P' = -\frac{cPV^{c-1}}{V^c} = -\frac{cP}{V} \)

c) \(c^2 = a^2 + b^2 - 2ab\cos \theta \) implies

\[0 = 2aa' + 2b - 2(\cos \theta(a'b + a)) \implies a' = \frac{-2b + 2\cos \theta \cdot a}{2a - 2\cos \theta \cdot b} = \frac{a \cos \theta - b}{a - b \cos \theta} \]

1G. Higher derivatives
1. Differentiation

1G-1

a) \(6 - x^{-3/2} \)
b) \(\frac{-10}{(x+5)^3} \)
c) \(\frac{-10}{(x+5)^3} \)
d) 0

1G-2 If \(y''' = 0 \), then \(y'' = c_0 \), a constant. Hence \(y' = c_0 x + c_1 \), where \(c_1 \) is some other constant. Next, \(y = c_0 x^2/2 + c_1 x + c_2 \), where \(c_2 \) is yet another constant. Thus, \(y \) must be a quadratic polynomial, and any quadratic polynomial will have the property that its third derivative is identically zero.

1G-3

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \implies \frac{2x}{a^2} + \frac{2yy'}{b^2} = 0 \implies y' = -(b^2/a^2)(x/y)
\]

Thus,

\begin{align*}
(37) \quad y'' &= -\left(\frac{b^2}{a^2} \right) \left(\frac{y - xy'}{y^2} \right) = -\left(\frac{b^2}{a^2} \right) \left(\frac{y + x(b^2/a^2)(x/y)}{y^2} \right) \\
(38) \quad &= -\left(\frac{b^4}{y^3a^2} \right) \left(y^2/b^2 + x^2/a^2 \right) = -\frac{b^4}{a^2y^3}
\end{align*}

1G-4 \(y = (x + 1)^{-1} \), so \(y^{(1)} = -(x + 1)^{-2} \), \(y^{(2)} = (-1)(-2)(x + 1)^{-3} \), and

\[
y^{(3)} = (-1)(-2)(-3)(x + 1)^{-4}.
\]

The pattern is

\[
y^{(n)} = (-1)^n(n!)(x + 1)^{-n-1}
\]
E. Solutions to 18.01 Exercises

1G-5 a) \(y' = u'v + uv' \implies y'' = u''v + 2u'v' + uv'' \)

b) Formulas above do coincide with Leibniz’s formula for \(n = 1 \) and \(n = 2 \). To calculate \(y^{(p+q)} \) where \(y = x^p(1 + x)^q \), use \(u = x^p \) and \(v = (1 + x)^q \). The only term in the Leibniz formula that is not 0 is \(\binom{n}{k} u^{(p)}v^{(q)} \), since in all other terms either one factor or the other is 0. If \(u = x^p, u^{(p)} = p! \), so

\[
y^{(p+q)} = \binom{n}{p} p! q! = \frac{n!}{p!q!} \cdot p! q! = n!
\]

1H. Exponentials and Logarithms: Algebra

1H-1 a) To see when \(y = y_0/2 \), we must solve the equation \(\frac{y_0}{2} = y_0 e^{-kt} \), or \(\frac{1}{2} = e^{-kt} \).

Take \(\ln \) of both sides: \(-\ln 2 = -kt \), from which \(t = \frac{\ln 2}{k} \).

b) \(y_1 = y_0 e^{kt_1} \) by assumption, \(\lambda = \frac{-\ln 2}{k} y_0 e^{k(t_1 + \lambda)} = y_0 e^{kt_1} \cdot e^{k\lambda} = y_1 \).

\[
e^{-\ln 2} = y_1 \cdot \frac{1}{2}
\]

1H-2 \(pH = -\log_{10}[H^+] \); by assumption, \([H^+]_{dil} = \frac{1}{2} [H^+]_{orig} \). Take \(-\log_{10} \) of both sides (note that \(\log 2 \approx .3 \)):

\[
-log [H^+]_{dil} = \log 2 - \log [H^+]_{orig} \implies pH_{dil} = pH_{orig} + \log 2.
\]

1H-3 a) \(\ln(y + 1) + \ln(y - 1) = 2x + \ln x \); exponentiating both sides and solving for \(y \):

\[
(y + 1) \cdot (y - 1) = e^{2x} \cdot x \implies y^2 - 1 = xe^{2x} \implies y = \sqrt{xe^{2x} + 1}, \text{ since } y > 0.
\]

b) \(\log(y + 1) - \log(y - 1) = -x^2 \); exponentiating, \(\frac{y + 1}{y - 1} = 10^{-x^2} \). Solve for \(y \); to simplify the algebra, let \(A = 10^{-x^2} \). Cross-multiplying, \(y + 1 = Ay - A \implies y = \frac{A + 1}{A - 1} = \frac{10^{-x^2} + 1}{10^{-x^2} - 1} \)

\[
c) 2 \ln y - \ln(y + 1) = x; \text{ exponentiating both sides and solving for } y:
\]
1. Differentiation

\[
\frac{y^2}{y + 1} = e^x \implies y^2 - e^x y - e^x = 0 \implies y = \frac{e^x \sqrt{e^{2x} + 4e^x}}{2}, \text{ since } y - 1 > 0.
\]

1H-4 \[\frac{\ln a}{\ln b} = c \implies \ln a = c \ln b \implies a = e^{c \ln b} = e^{\ln b^c} = b^c. \text{ Similarly, } \frac{\log a}{\log b} = c \implies a = b^c.\]

1H-5

a) Put \(u = e^x \) (multiply top and bottom by \(e^x \) first): \(\frac{u^2 + 1}{u^2 - 1} = y; \) this gives \(u^2 = \frac{y + 1}{y - 1} = e^{2x}; \) taking \(\ln: \) \(2x = \ln(\frac{y + 1}{y - 1}), \) \(x = \frac{1}{2} \ln(\frac{y + 1}{y - 1}) \)

b) \(e^x + e^{-x} = y; \) putting \(u = e^x \) gives \(u + \frac{1}{u} = y; \) solving for \(u \) gives \(u^2 - yu + 1 = 0 \) so that \(u = \frac{y \pm \sqrt{y^2 - 4}}{2} = e^x; \) taking \(\ln: \) \(x = \ln(\frac{y \pm \sqrt{y^2 - 4}}{2}) \)

1H-6 \(A = \log e \cdot \ln 10 = \ln(10^{\log e}) = \ln(e) = 1; \) similarly, \(\log_a a \cdot \log_a b = 1 \)

1H-7
a) If \(I_1 \) is the intensity of the jet and \(I_2 \) is the intensity of the conversation, then

\[
\log_{10}(I_1/I_2) = \log_{10}\left(\frac{I_1/I_0}{I_2/I_0}\right) = \log_{10}(I_1/I_0) - \log_{10}(I_2/I_0) = 13 - 6 = 7.
\]

Therefore, \(I_1/I_2 = 10^7. \)

b) \(I = C/r^2 \) and \(I = I_1 \) when \(r = 50 \) implies

\[
I_1 = C/50^2 \implies C = I_1 50^2 \implies I = I_1 50^2/r^2
\]

This shows that when \(r = 100, \) we have \(I = I_1 50^2/100^2 = I_1/4. \) It follows that

\[10 \log_{10}(I/I_0) = 10 \log_{10}(I_1/I_0) = 10 \log_{10}(I_1/I_0) - 10 \log_{10} 4 \approx 130 - 6.0 \approx 124\]

The sound at 100 meters is 124 decibels.

The sound at 1 km has 1/100 the intensity of the sound at 100 meters, because \(100m/1km = 1/10. \)

\[10 \log_{10}(1/100) = 10(-2) = -20\]

so the decibel level is \(124 - 20 = 104.\)

11. Exponentials and Logarithms: Calculus

11-1
a) \((x + 1)e^x\)
b) \(4xe^{2x}\)
c) \((-2x)e^{-x^2}\)
d) \(\ln x\)
e) \(2/x\)
f) \(2(\ln x)/x\)
g) \(4xe^{2x^2}\)
h) \((x^e)' = (e^{x \ln x})' = (x \ln x)'e^{x \ln x} = (\ln x + 1)e^{x \ln x} = (1 + \ln x)x^e\)

i) \((e^x - e^{-x})/2\)

j) \((e^x + e^{-x})/2\)

k) \(-1/x\)

l) \(-1/(x(ln x)^2)\)

m) \(-2e^x/(1 + x)^2\)

\[\frac{1}{\cos} \]

II-3 a) As \(n \to \infty\), \(h = 1/n \to 0\).

\[
n \ln(1 + \frac{1}{n}) = \frac{\ln(1 + h) - \ln(1)}{h} \to \frac{d}{dx} \ln(1 + x) \bigg|_{x=0} = 1
\]

Therefore,

\[
\lim_{n \to \infty} n \ln(1 + \frac{1}{n}) = 1
\]

b) Take the logarithm of both sides. We need to show

\[
\lim_{n \to \infty} \ln(1 + \frac{1}{n}) = \ln e = 1
\]

But

\[
\ln(1 + \frac{1}{n}) = n \ln(1 + \frac{1}{n})
\]

so the limit is the same as the one in part (a).

II-4 a)

\[
\left(1 + \frac{1}{n}\right)^{3n} = \left(\left(1 + \frac{1}{n}\right)^{n}\right)^3 \to e^3 \text{ as } n \to \infty,
\]

b) Put \(m = n/2\). Then

\[
\left(1 + \frac{2}{n}\right)^{5n} = \left(1 + \frac{1}{m}\right)^{10m} = \left(\left(1 + \frac{1}{m}\right)^m\right)^{10} \to e^{10} \text{ as } m \to \infty
\]

c) Put \(m = 2n\). Then

\[
\left(1 + \frac{1}{2n}\right)^{5n} = \left(1 + \frac{1}{m}\right)^{5m/2} = \left(\left(1 + \frac{1}{m}\right)^m\right)^{5/2} \to e^{5/2} \text{ as } m \to \infty
\]

1J. Trigonometric functions

1J-1 a) \(10x \cos(5x^2)\) b) \(6 \sin(3x) \cos(3x)\) c) \(-2 \sin(2x)/\cos(2x) = -2 \tan(2x)\)
1. Differentiation

E. Solutions to 18.01 Exercises

d) \(-2 \sin x / (2 \cos x) = -\tan x\). (Why did the factor 2 disappear? Because \(\ln(2 \cos x) = \ln 2 + \ln(\cos x)\), and the derivative of the constant \(\ln 2\) is zero.)

e) \(x \cos x - \sin x / x^2\)

f) \(-(1+y') \sin(x+y)\)

g) \(-\sin(x+y)\)

h) \(2 \sin x \cos x \sin^2 x\)

i) \((x^2 \sin x)' / x^2 \sin x = 2 \sin x + x^2 \cos x / x^2 \sin x = 2 / x + \cot x\). Alternatively,

\[
\ln(x^2 \sin x) = \ln(x^2) + \ln(\sin x) = 2 \ln x + \ln \sin x
\]

Differentiating gives \(2 / x + \cos x / \sin x = 2 / x + \cot x\)

j) \(2e^{2x} \sin(10x) + 10e^{2x} \cos(10x)\)

k) \(6 \tan(3x) \sec^2(3x) = 6 \sin x / \cos^3 x\)

l) \(-x(1 - x^2)^{-1/2} \sec(\sqrt{1 - x^2}) \tan(\sqrt{1 - x^2})\)

m) Using the chain rule repeatedly and the trigonometric double angle formulas,

\[
(\cos^2 x - \sin^2 x)' = -2 \cos x \sin x - 2 \sin x \cos x = -4 \cos x \sin x;
\]

\[
(2 \cos^2 x)' = -4 \cos x \sin x;
\]

\[
(\cos(2x))' = -2 \sin(2x) = -2(2 \sin x \cos x).
\]

The three functions have the same derivative, so they differ by constants. And indeed,

\[
\cos(2x) = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1, \quad \text{(using} \sin^2 x = 1 - \cos^2 x).\]

n) \(5(\sec(5x) \tan(5x)) \tan(5x) + 5(\sec(5x)(\sec^2(5x)) = 5 \sec(5x)(\sec^2(5x) + \tan^2(5x))\)

Other forms: \(5 \sec(5x)(2 \sec^2(5x) - 1); \quad 10 \sec^3(5x) - 5 \sec(5x)\)

o) \(0\) because \(\sec^2(3x) - \tan^2(3x) = 1\), a constant — or carry it out for practice.

p) Successive use of the chain rule:

\[
(\sin(\sqrt{x^2 + 1}))' = \cos(\sqrt{x^2 + 1}) \cdot \frac{1}{2} (x^2 + 1)^{-1/2} \cdot 2x
\]

\[
= \frac{x}{\sqrt{x^2 + 1}} \cos(\sqrt{x^2 + 1})
\]
q) Chain rule several times in succession:

\[
(c \cos \sqrt{1 - x^2})' = 2 \cos \sqrt{1 - x^2} \cdot (-\sin \sqrt{1 - x^2}) \cdot \frac{-x}{\sqrt{1 - x^2}}
\]

\[
= \frac{x}{\sqrt{1 - x^2}} \sin(2\sqrt{1 - x^2})
\]

r) Chain rule again:

\[
\left(\tan^2\left(\frac{x}{x + 1}\right)\right)' = 2 \tan\left(\frac{x}{x + 1}\right) \cdot \sec^2\left(\frac{x}{x + 1}\right) \cdot \frac{x + 1 - x}{(x + 1)^2}
\]

\[
= \frac{2}{(x + 1)^2} \tan\left(\frac{x}{x + 1}\right) \sec^2\left(\frac{x}{x + 1}\right)
\]

\[1J-2\] Because \(\cos(\pi/2) = 0\),

\[
\lim_{x \to \pi/2} \frac{\cos x}{x - \pi/2} = \lim_{x \to \pi/2} \frac{\cos x - \cos(\pi/2)}{x - \pi/2} = \frac{d}{dx} \cos x|_{x = \pi/2} = -\sin x|_{x = \pi/2} = -1
\]

\[1J-3\] a) \((\sin(kx))' = k \cos(kx)\). Hence

\((\sin(kx))'' = (k \cos(kx))' = -k^2 \sin(kx)\).

Similarly, differentiating cosine twice switches from sine and then back to cosine with only one sign change, so

\((\cos(kx))'' = -k^2 \cos(kx)\)

Therefore,

\[\sin(kx)'' + k^2 \sin(kx) = 0\] and \[\cos(kx)'' + k^2 \cos(kx) = 0\]

Since we are assuming \(k > 0\), \(k = \sqrt{a}\).

b) This follows from the linearity of the operation of differentiation. With \(k^2 = a\),

\[c_1 \sin(kx) + c_2 \cos(kx)\]

\[
(c_1 \sin(kx) + c_2 \cos(kx))'' + k^2(c_1 \sin(kx) + c_2 \cos(kx))
\]

\[
= c_1(\sin(kx))'' + c_2(\cos(kx))'' + k^2c_1 \sin(kx) + k^2c_2 \cos(kx)
\]

\[
= c_1[(\sin(kx))'' + k^2 \sin(kx)] + c_2[(\cos(kx))'' + k^2 \cos(kx)]
\]

\[
= c_1 \cdot 0 + c_2 \cdot 0 = 0
\]

c) Since \(\phi\) is a constant, \(d(kx + \phi)/dx = k\), and \((\sin(kx + \phi))' = k \cos(kx + \phi)\),

\((\sin(kx + \phi))'' = (k \cos(kx + \phi))' = -k^2 \sin(kx + \phi)\)

Therefore, if \(a = k^2\),

\[(\sin(kx + \phi))'' + a \sin(kx + \phi) = 0\]

d) The sum formula for the sine function says

\[
\sin(kx + \phi) = \sin(kx) \cos(\phi) + \cos(kx) \sin(\phi)
\]

In other words

\[
\sin(kx + \phi) = c_1 \sin(kx) + c_2 \cos(kx)
\]
with $c_1 = \cos(\phi)$ and $c_2 = \sin(\phi)$.

1J-4

a) The Pythagorean theorem implies that
$$c^2 = \sin^2 \theta + (1 - \cos \theta)^2 = \sin^2 \theta + 1 - 2 \cos \theta + \cos^2 \theta = 2 - 2 \cos \theta$$
Thus,
$$c = \sqrt{2 - 2 \cos \theta} = 2 \sqrt{\frac{1 - \cos \theta}{2}} = 2 \sin(\theta/2)$$

b) Each angle is $\theta = 2\pi/n$, so the perimeter of the n-gon is
$$n \sin(2\pi/n)$$
As $n \to \infty$, $h = 2\pi/n$ tends to 0, so
$$n \sin(2\pi/n) = \frac{2\pi}{h} \sin h = 2\pi \frac{\sin h - \sin 0}{h} \to 2\pi \frac{d}{dx} \sin x|_{x=0} = 2\pi \cos x|_{x=0} = 2\pi$$