Example 2. \(f(x) = x^n \) where \(n = 1, 2, 3 \ldots \)

In this example we answer the question “What is \(\frac{d}{dx}x^n \)?” Once we know the answer we can use it to, for example, find the derivative of \(f(x) = x^4 \) by replacing \(n \) by 4.

At this point in our studies, we only know one tool for finding derivatives – the difference quotient. So we plug \(y = f(x) \) into the definition of the difference quotient:

\[
\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(x_0 + \Delta x)^n - x_0^n}{\Delta x}
\]

Because writing little zeros under all our \(x \)’s is a nuisance and a waste of chalk (or of photons!), and because there’s no other variable named \(x \) to get confused with, from here on we’ll replace \(x_0 \) with \(x \).

\[
\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^n - x^n}{\Delta x}
\]

Remember that when we use the difference quotient, we’re thinking of \(x \) as fixed and of \(\Delta x \) as getting closer to zero. We want to simplify this fraction so that we can plug in 0 for \(\Delta x \) without any danger of dividing by zero. To do this we must expand the expression \((x + \Delta x)^n\).

A famous formula called the binomial theorem tells us that:

\[
(x + \Delta x)^n = (x + \Delta x)(x + \Delta x)\cdots(x + \Delta x) \quad n \text{ times}
\]

We can rewrite this as

\[
x^n + n(x\Delta x)x^{n-1} + O((\Delta x)^2)
\]

where \(O((\Delta x)^2) \) is shorthand for “all of the terms with \((\Delta x)^2\), \((\Delta x)^3\), and so on up to \((\Delta x)^n\).”

One way to begin to understand this is to think about multiplying all the \(x \)’s together from

\[
(x + \Delta x)^n = (x + \Delta x)(x + \Delta x)\cdots(x + \Delta x) \quad n \text{ times.}
\]

There are \(n \) of these \(x \)’s, so multiplying them together gives you one term of \(x^n \). What if you only multiply together \(n - 1 \) of the \(x \)’s? Then you have one \((x + \Delta x)\) left that you haven’t taken an \(x \) from, and you can multiply your \(x^{n-1}\) by \(\Delta x \). (If you multiplied by \(x \), you’d just have the \(x^n \) that you already got.) There were \(n \) different \(\Delta x \)’s that you could have chosen to use, so you can get this result \(n \) different ways. That’s where the \(n(\Delta x)x^{n-1} \) comes from.

We could keep going, and figure out how many different ways there are to multiply \(n - 2 \) \(x \)’s by two \(\Delta x \)’s, and so on, but it turns out we don’t need to. Every other way of multiplying together one thing from each \((x + \Delta x)\) gives you at least two \(\Delta x \)’s, and \(\Delta x \cdot \Delta x \) is going to be too small to matter to us as \(\Delta x \to 0 \).
Now that we have some idea of what \((x + \Delta x)^n\) is, let’s go back to our difference quotient.

\[
\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^n - x^n}{\Delta x} = \frac{(x^n + n(x^n + \Delta x)(x^{n-1}) + O(\Delta x)^2) - x^n}{\Delta x} = nx^{n-1} + O(\Delta x)
\]

As it turns out, we can simplify the quotient by canceling a \(\Delta x\) in all of the terms in the numerator. When we divide a term that contains \(\Delta x^2\) by \(\Delta x\), the \(\Delta x^2\) becomes \(\Delta x\) and so our \(O(\Delta x^2)\) becomes \(O(\Delta x)\).

When we take the limit as \(x\) approaches 0 we get:

\[
\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = nx^{n-1}
\]

and therefore,

\[
\frac{d}{dx} x^n = nx^{n-1}
\]

This result is sometimes called the “power rule”. We will use it often to find derivatives of polynomials; for example,

\[
\frac{d}{dx} (x^2 + 3x^{10}) = 2x + 30x^9
\]