The Function $\text{sinc}(x)$

The *unnormalized sinc function* is defined to be:

$$\text{sinc}(x) = \frac{\sin x}{x}.$$

This function is used in signal processing, a field which includes sound recording and radio transmission.

Use your understanding of the graphs of $\sin(x)$ and $\frac{1}{x}$ together with what you learned in this lecture to sketch a graph of $\text{sinc}(x) = \sin(x) \cdot \frac{1}{x}$.

Solution

Because $\lim_{x \to 0} \frac{\sin x}{x} = 1$, we know that $\text{sinc}(0) = 1$.

Because $\sin(x)$ oscillates between positive and negative values, $\text{sinc}(x)$ will do so as well. Except at $x = 0$, the x-intercepts of the graph of $\text{sinc}(x)$ will match those of $\sin(x)$.

We know that $-1 \leq \sin(x) \leq 1$, so it must be true that:

$$-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}.$$

The graph of $\text{sinc}(x)$ moves up and down between the graphs of $\frac{1}{x}$ and $-\frac{1}{x}$.

![Graph of sinc(x)](image)

Figure 1: The graphs of $\sin(x)$ (green), $\frac{1}{x}$ (blue) and $-\frac{1}{x}$ (red).

In drawing the graph of $\text{sinc}(x)$ we start by superimposing the graphs of $\sin(x)$, $\frac{1}{x}$ and $-\frac{1}{x}$. (See Figure 1.)
When $x < 0$, both $\frac{1}{x}$ and $\sin(x)$ are negative, so their quotient is positive; sinc(x) turns out to be an even function. Knowing this, we quickly guess that the graph of sinc(x) looks like graph shown in Figure 2. (It’s not easy to tell what the graph will look like near $x = 0$. We could deal with this by plotting a few points using a calculator or by learning more calculus and then returning to this problem.)

Figure 2: The graph of sinc(x).