Quadratic Approximation at 0 for Several Examples

We’ll save the derivation of the formula:

\[f(x) \approx f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2}(x-x_0)^2 \quad (x \approx x_0) \]

for later; right now we’re going to find formulas for quadratic approximations of the functions for which we have a library of linear approximations.

Basic Quadratic Approximations:

In order to find quadratic approximations we need to compute second derivatives of the functions we’re interested in:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
<th>(f(0))</th>
<th>(f'(0))</th>
<th>(f''(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin x)</td>
<td>(\cos x)</td>
<td>(-\sin x)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(-\sin x)</td>
<td>(-\cos x)</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(e^x)</td>
<td>(3^x)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\ln(1+x))</td>
<td>(\frac{1}{1+x})</td>
<td>(-\frac{1}{(1+x)^2})</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>((1+x)^r)</td>
<td>(r(1+x)^{r-1})</td>
<td>(r(r-1)(1+x)^{r-2})</td>
<td>1</td>
<td>(r)</td>
<td>(r(r-1))</td>
</tr>
</tbody>
</table>

Plugging the values for \(f(0) \), \(f'(0) \) and \(f''(0) \) in to the quadratic approximation we get:

1. \(\sin x \approx x \quad (\text{if } x \approx 0) \)
2. \(\cos x \approx 1 - \frac{x^2}{2} \quad (\text{if } x \approx 0) \)
3. \(e^x \approx 1 + x + \frac{1}{2}x^2 \quad (\text{if } x \approx 0) \)
4. \(\ln(1+x) \approx x - \frac{1}{2}x^2 \quad (\text{if } x \approx 0) \)
5. \((1+x)^r \approx 1 + rx + \frac{r(r-1)}{2}x^2 \quad (\text{if } x \approx 0) \)

We’ve computed some formulas; now let’s think about their meaning.

Geometric significance (of the quadratic term)

A quadratic approximation gives a best-fit parabola to a function. For example, let’s consider \(f(x) = \cos(x) \) (see Figure 1).

The linear approximation of \(\cos x \) near \(x_0 = 0 \) approximates the graph of the cosine function by the straight horizontal line \(y = 1 \). This doesn’t seem like a very good approximation.

The quadratic approximation to the graph of \(\cos(x) \) is a parabola that opens downward; this is much closer to the shape of the graph at \(x_0 = 0 \) than the line.
Figure 1: Quadratic approximation to $\cos(x)$.

$y = 1$. To find the equation of this quadratic approximation we set $x_0 = 0$ and perform the following calculations:

\[
\begin{align*}
 f(x) &= \cos(x) \quad \Rightarrow \quad f(0) = \cos(0) = 1 \\
 f'(x) &= -\sin(x) \quad \Rightarrow \quad f'(0) = -\sin(0) = 0 \\
 f''(x) &= -\cos(x) \quad \Rightarrow \quad f''(0) = -\cos(0) = -1.
\end{align*}
\]

We conclude that:

\[
\cos(x) \approx 1 + 0 \cdot x - \frac{1}{2} x^2 = 1 - \frac{1}{2} x^2.
\]

This is the closest (or “best fit”) parabola to the graph of $\cos(x)$ when x is near 0.
MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.