Proof of the First Fundamental Theorem of Calculus

The first fundamental theorem says that the integral of the derivative is the function; or, more precisely, that it’s the difference between two outputs of that function.

Theorem: (First Fundamental Theorem of Calculus) If \(f \) is continuous and \(F' = f \), then \(\int_a^b f(x) \, dx = F(b) - F(a) \).

Proof: By using Riemann sums, we will define an antiderivative \(G \) of \(f \) and then use \(G(x) \) to calculate \(F(b) - F(a) \).

We start with the fact that \(F' = f \) and \(f \) is continuous. (It’s not strictly necessary for \(f \) to be continuous, but without this assumption we can’t use the second fundamental theorem in our proof.)

Next, we define \(G(x) = \int_a^x f(t) \, dt \). (We know that this function exists because we can define it using Riemann sums.)

The second fundamental theorem of calculus tells us that:

\[
G'(x) = f(x)
\]

So \(F'(x) = G'(x) \). Therefore,

\[
(F - G)' = F' - G' = f - f = 0
\]

Earlier, we used the mean value theorem to show that if two functions have the same derivative then they differ only by a constant, so \(F - G = \) constant or

\[
F(x) = G(x) + c.
\]

This is an essential step in an essential proof; all of calculus is founded on the fact that if two functions have the same derivative, they differ by a constant.

Now we compute \(F(b) - F(a) \) to see that it is equal to the definite integral:

\[
F(b) - F(a) = (G(b) + c) - (G(a) + c)
= G(b) - G(a)
= \int_a^b f(t) \, dt - \int_a^a f(t) \, dt
= \int_a^b f(t) \, dt - 0
= \int_a^b f(t) \, dt
= \int_a^b f(x) \, dx
\]
18.01SC Single Variable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.