Another Reduction Formula: \(\int x^n e^x \, dx \)

To compute \(\int x^n e^x \, dx \) we derive another reduction formula. We could replace \(e^x \) by \(\cos x \) or \(\sin x \) in this integral and the process would be very similar.

Again we'll use integration by parts to find a reduction formula. Here we choose \(u = x^n \) because

\[u' = nx^{n-1} \]

is a simpler (lower degree) function. If \(u = x^n \) then we'll have to have

\[v' = e^x, \quad v = e^x. \]

(Note that the antiderivative of \(v \) is no more complicated than \(v' \) was — another indication that we've chosen correctly.)

On the other hand, if we used \(u = e^x \), then \(u' = e^x \) would not be any simpler.

Performing the integration by parts we get:

\[
\int x^n e^x \, dx = \frac{x^n e^x}{uv'} - \int \frac{x^{n-1} e^x}{u'v} \, dx.
\]

If:

\[G_n(x) = \int x^n e^x \, dx \]

then we get the reduction formula:

\[G_n(x) = x^n e^x - nG_{n-1}(x). \]

Let’s illustrate this by computing a few integrals. First we directly compute:

\[G_0(x) = \int x^0 e^x \, dx = e^x + c. \]

Now we can use the reduction formula to conclude that:

\[G_1(x) = xe^x - G_0(x) = xe^x - e^x + c. \]

So \(\int x e^x \, dx = xe^x - e^x + c. \)

Question: How do you know when this method will work?

Answer: Good question! The answer is “only through experience and practice”. To use this method on an integrand, we need one factor \(u \) of the integrand to get simpler when we differentiate and the other factor \(v \) not to get more complicated when we integrate.

We’ve seen how to use integration by parts to derive reduction formulas. We could also find these formulas by advanced guessing — guess what the formula should be and then check it. Either method is valid.