Matlab Instructions

Matlab calculates with matrices and vectors and draws graphs in 2D and 3D. Skip the Introduction and Help documents; as preliminary practice, just read and carry out the following.

Entering matrices and vectors. In Matlab the variables represent matrices and vectors. The symbol = assigns the value on the right side of the equation to the symbol on the left. Type each of these lines in order, and see what you get. (Always hit [return] to end a line or command.)

```
A = [1 2 3; 4 5 6; 7 8 9]  (you can use commas instead of spaces: 1,2,3;)
b = [5 2 1]
b'  (transpose: gives the column vector which Matlab calls [5;2;1])
eye(3)  (eye = I, the identity matrix)
```

Try making a mistake: C = [1,2,3; 4,5]. To edit the mistake, press any of the four arrow keys to get the line back. (You can also prepare your commands in a text editor such as emacs and copy them with the mouse onto the Matlab command line.)

Operations with matrices and vectors

- **Sum, difference** \(A+B, A-B \) (matrices must be same size)
- **Product** \(A*B \) (matrices must be compatibly sized)
- **Powers** \(A^n \) (A times itself \(n \) times; \(A \) must be square)
- **Transpose** \(A' \)
- **Inverse** \(\text{inv}(A) \) (or \(A^{-1} \))

Try typing (use the values of \(A \) and \(b \) above): \(A+\text{eye}(3) \quad A*b \quad A*(b') \quad A*b' \quad b*A \)
Graphing with Matlab

Array operations. Recall that * and \(^\) are product and power operations for matrices. Adding a dot before * or \(^\) makes these operations act component-wise. So, if \(x = [x_1 \ x_2 \ldots \ x_n] \), then

\[
\exp(x) = [\exp(x_1) \ldots \exp(x_n)] \quad \text{(similarly with \(\sin, \cos, \log \), etc.)}
\]

\[
x \cdot y = [x_1 + y_1 \ldots x_n + y_n] \quad \text{(similarly with \(-\))}
\]

\[
x \cdot y = [x_1 y_1 \ldots x_n y_n]
\]

\[
x \cdot m = [x_1^m \ldots x_n^m] \quad \text{(\(m \) can be zero)}
\]

Colon operator. This generates a vector with equally spaced entries; for example,

\[
[0 : 2 : 12] = [0 2 4 6 8 10 12]; \quad [2 : -.1 : 1.6] = [2.0 1.9 1.8 1.7 1.6]
\]

2D plot directions. Given \(x = [x_1 \ x_2 \ldots \ x_n], \ y = [y_1 \ldots \ y_n] \),

- \(\text{plot}(x,y) \) plots the \(n \) points \((x_i, y_i)\), joined by solid line segments.
- \(\text{plot}(x,y,'--') \) plots the \(n \) points, joined by dashed line segments.
- \(\text{plot}(x,y,'*') \) plots the \(n \) points as individual stars (or dots or circles, etc).

hold toggles between on and off (at the start it’s off); when off, a new plot erases the previous one; when on, the new plot is superimposed on the old one.

print gives a print-out of the current screen plot.

Try in order (press [return] after each command):

\[
x = [0:.1:2]
\]

\[
\text{plot}(x,\sin(x))
\]

\[
\text{plot}(x,\cos(x),'*')
\]

hold

\[
\text{plot}(x,\sin(x),'--')
\]

hold

\[
\text{plot}(x,4*x.^3) \quad \text{(this plots \(y = 4x^3 \); note the need for the array operator)}
\]

You can also put graphs and scatter plots together without the hold command. The commands below graph the three functions \(10x, 10x^{1/2}, 2x^{5/3} \). (With the semicolon at the end of each command Matlab won’t print out all the numbers. The semicolon also permits you to put several commands on one line.)

\[
x = [2:40:400]; \quad w = [1:1:500]; \quad b = 10*(w.^\.5); \quad c = 2*(w.^\((5/3)));
\]

\[
\text{plot}(x,10*x, '*',w,b,c, '--');
\]
Graphing with Matlab (continued)

3D Plot directions. To plot \(z = f(x, y) \), you specify:

the grid \((x_i, y_j)\) of lattice points: give the vectors \(x = [x_1 \ldots x_n] \) and \(y = [y_1 \ldots y_n] \).

Example: To make a grid with spacing .1, over the interval \([-2, 2]\) on both axes, type (in what follows, \(\gg \) is the matlab prompt; don’t type it — type the semicolon at the end so Matlab won’t print out all the numbers — remember [return] at the end)

\[
\gg x = [-2 : .1 : 2]; \\
\gg y = [-2 : .1 : 2]; \\
\gg [x, y] = \text{meshgrid}(x, y);
\]

the function \(z = f(x, y) \) For example, to graph the function \(f(x, y) = y^2 - x^2 \), type

\[
\gg z = y.\text{^}2 - x.\text{^}2;
\]

plot the graph either as a mesh of lines, or as a filled-in surface (the color indicates the value of \(z \), i.e., the height of the graph above the \(xy \)-plane); type first

\[
\gg \text{mesh}(x, y, z) \quad \text{then} \quad \gg \text{surf}(x, y, z)
\]

change the viewpoint The default picture is shown at the right; to change the viewpoint (rotate left-right, or up-down), type

\[
\gg \text{rotate3d}
\]

then place the mouse cursor in the graph region, hold down left button, move mouse, release button. The two numbers on the screen are the azimuth: angle in degrees from the negative \(y \)-axis to the line of sight, and the elevation, the angle in degrees from the \(xy \)-plane to the line of sight.

To turn off rotation, type again: \(\gg \text{rotate3d} \)

hidden lines Try typing: \(\gg \text{hidden} \) (type it again to change back)

changing scale To change the \(x \)-axis scale to \([-4, 4]\), the \(y \)-axis to \([-5, 5]\), and the \(z \)-axis to \([-20, 20]\), type

\[
\gg \text{axis}([-4 4 -5 5 -20 20])
\]

contour curves To get a 2D plot of level curves or a 3D plot with 20 contour curves, type

\[
\gg \text{contour}(x, y, z, 20) \quad \gg \text{contour3}(x, y, z, 20)
\]