18.02 Exam 1 Thursday, Feb 23rd, 2006

Directions: Do all the work on these pages; use reverse side if needed. Answers without accompanying reasoning may only receive partial credit. No books, notes, or calculators. Please stop when asked to and don’t talk until your paper is handed in.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>/ 15</td>
</tr>
<tr>
<td>2.</td>
<td>/ 20</td>
</tr>
<tr>
<td>3.</td>
<td>/ 25</td>
</tr>
<tr>
<td>4.</td>
<td>/ 15</td>
</tr>
<tr>
<td>5.</td>
<td>/ 25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>/ 100</td>
</tr>
</tbody>
</table>
Problem 1.

The plane $x - 2y + 2z = 2$ meets the x-axis at P, the y-axis at Q and the z-axis at R.

a) (7) Find the vectors \overrightarrow{QP} and \overrightarrow{QR} in terms of \hat{i}, \hat{j} and \hat{k}.

b) (8) Find the cosine of the angle PQR.
Problem 2.

a) (10) Find the area of the triangle with vertices \(P_1 = (1, -1, 0), P_2 = (2, 1, 0), \) and \(P_3 = (-2, 2, 2). \)

b) (5) Find the equation for the plane through the points in the form \(ax + by + cz = d. \)

c) (5) Does the plane meet the segment from \(Q_1 = (0, -1, 0) \) to \(Q_2 = (2, 0, 0) \)?
(Say yes or no and why.)
Problem 3.

a) (10) Find the entries a and b of the inverse matrix A^{-1}.

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{pmatrix} ; \quad A^{-1} = \begin{pmatrix} a & \ldots \\ \ldots & b & \ldots \\ \ldots & \ldots & \ldots \end{pmatrix}$$

b) (8) For the system below, say which of x, y or z you can find using only the entries a and b from A^{-1}, and find it.

$$\begin{align*}
3y + z &= 1 \\
x - y + z &= 3 \\
2x + y &= 0
\end{align*}$$

c) (7) For which values of c does the system below have exactly one solution?

$$\begin{align*}
3y + c &= 1 \\
x - y + z &= 3 \\
2x + y &= 0
\end{align*}$$
Problem 4.

a) (7) A searchlight at the origin points in the direction \(\hat{i} \) at time \(t = 0 \) minutes and rotates counterclockwise in the plane at one rpm (revolution per minute). Find the trajectory of the path of the light on a wall \(x = 2 \).

b) (8) An extendable robot arm rotates at 5 rpm counterclockwise around the origin \(O \) in the plane. At time \(t = 0 \) minutes the arm is the segment \(OP \) of length 1 along the positive \(x \)-axis, and the arm lengthens at unit speed. Find the parametric equations for the end \(P = (x, y) \) of the arm.
Problem 5.
Let \(\mathbf{r} = \cos(t^3)\hat{j} + \sin(t^3)\hat{k} \)

a) (5) Compute the velocity \(\mathbf{v} \).

b) (5) Compute \(\mathbf{r} \cdot \mathbf{v} \).

c) (10) Compute \(\mathbf{r} \times \mathbf{v} \).

d) (5) Compute \(\mathbf{r} \times \mathbf{a} \).
(\(\mathbf{a} \) is acceleration. Hint: It’s faster to use (c).)