18.02 Practice Exam 3B

Problem 1. a) Draw a picture of the region of integration of \(\int_0^1 \int_x^{2x} dy \, dx \)

b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order \(dx \, dy \). Warning: your answer will have two pieces.

Problem 2. a) Find the mass \(M \) of the upper half of the annulus, \(1 < x^2 + y^2 < 9 \) (\(y \geq 0 \)) with density \(\delta = \frac{y}{x^2 + y^2} \).

b) Express the \(x \)-coordinate of the center of mass, \(\bar{x} \), as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why \(\bar{x} = 0 \).

Problem 3. a) Show that \(\mathbf{F} = (3x^2 - 6y^2) \hat{i} + (-12xy + 4y) \hat{j} \) is conservative.

b) Find a potential function for \(\mathbf{F} \).

c) Let \(\mathbf{C} \) be the curve \(x = 1 + y^3(1 - y)^3, \ 0 \leq y \leq 1 \). Calculate \(\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} \).

Problem 4. a) Express the work done by the force field \(\mathbf{F} = (5x + 3y) \hat{i} + (1 + \cos y) \hat{j} \) on a particle moving counterclockwise once around the unit circle centered at the origin in the form \(\int_a^b f(t) \, dt \). (Do not evaluate the integral; don’t even simplify \(f(t) \).)

b) Evaluate the line integral using Green’s theorem.

Problem 5. Consider the rectangle \(R \) with vertices \((0, 0), (1, 0), (1, 4)\) and \((0, 4)\). The boundary of \(R \) is the curve \(\mathbf{C} \), consisting of \(C_1 \), the segment from \((0, 0)\) to \((1, 0)\), \(C_2 \), the segment from \((1, 0)\) to \((1, 4)\), \(C_3 \) the segment from \((1, 4)\) to \((0, 4)\) and \(C_4 \) the segment from \((0, 4)\) to \((0, 0)\). Consider the vector field
\[
\mathbf{F} = (\cos x \sin y) \hat{i} + (xy + \sin x \cos y) \hat{j}
\]
a) Find the work of \(\mathbf{F} \) along the boundary \(\mathbf{C} \) oriented in a counterclockwise direction.

b) Is the total work along \(C_1, C_2 \) and \(C_3 \), more than, less than or equal to the work along \(C_4 \)?

Problem 6. Find the volume of the region enclosed by the plane \(z = 4 \) and the surface
\[
z = (2x - y)^2 + (x + y - 1)^2.
\]
Suggestion: change of variables.