Problem 1. a) Draw a picture of the region of integration of \(\int_0^1 \int_x^{2x} dy \, dx \)

b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order \(dx \, dy \). Warning: your answer will have two pieces.

Problem 2. a) Find the mass \(M \) of the upper half of the annulus,
\[1 < x^2 + y^2 < 9 \quad (y \geq 0) \] with density \(\delta = \frac{y}{x^2 + y^2} \).

b) Express the \(x \)-coordinate of the center of mass, \(\bar{x} \), as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why \(\bar{x} = 0 \).

Problem 3. a) Show that \(F = (3x^2 - 6y^2)i + (-12xy + 4y)j \) is conservative.

b) Find a potential function for \(F \).

c) Let \(C \) be the curve \(x = 1 + y^3(1 - y)^3, \) \(0 \leq y \leq 1 \). Calculate \(\int_C F \cdot dr \).

Problem 4. a) Express the work done by the force field \(F = (5x + 3y)i + (1 + \cos y)j \) on a particle moving counterclockwise once around the unit circle centered at the origin in the form \(\int_a^b f(t) \, dt \). (Do not evaluate the integral; don’t even simplify \(f(t) \).)

b) Evaluate the line integral using Green’s theorem.

Problem 5. Consider the rectangle \(R \) with vertices \((0,0), (1,0), (1,4)\) and \((0,4)\). The boundary of \(R \) is the curve \(C \), consisting of \(C_1 \), the segment from \((0,0)\) to \((1,0)\), \(C_2 \), the segment from \((1,0)\) to \((1,4)\), \(C_3 \) the segment from \((1,4)\) to \((0,4)\) and \(C_4 \) the segment from \((0,4)\) to \((0,0)\). Consider the vector field
\[F = (\cos x \sin y)i + (xy + \sin x \cos y)j \]
a) Find the work of \(F \) along the boundary \(C \) oriented in a counterclockwise direction.

b) Is the total work along \(C_1, C_2 \) and \(C_3 \), more than, less than or equal to the work along \(C_4 \)?

Problem 6. Find the volume of the region enclosed by the plane \(z = 4 \) and the surface
\[z = (2x - y)^2 + (x + y - 1)^2. \]
Suggestion: change of variables.
1. a) \[x = 1, \quad y = 2 \]

b) \[\int_{y/2}^{y} dx dy + \int_{y/2}^{1} dx dy. \]

2. a) \[\delta dA = \frac{r \sin \theta}{r^2} r \, dr \, d\theta = \sin \theta \, dr \, d\theta. \]

\[M = \int_{R} \int_{R} \delta dA = \int_{0}^{\pi} \int_{1}^{3} \sin \theta \, d\theta \, dr = \int_{0}^{\pi} 2 \sin \theta \, d\theta = [-2 \cos \theta]_{0}^{\pi} = 4. \]

b) \[\bar{x} = \frac{1}{M} \int_{R} \int_{R} x \delta dA = \frac{1}{4} \int_{0}^{\pi} \int_{1}^{3} r \cos \theta \, d\theta \, dr \]

The reason why one knows that \(\bar{x} = 0 \) without computation is that \(x \) is odd with respect to the \(y \)-axis whereas the region and the density are symmetric with respect to the \(y \)-axis: \((x, y) \to (-x, y) \) preserves the half annulus and \(\delta(x, y) = \delta(-x, y) \).

3. a) \(N_x = -12y = M_y \), hence \(\mathbf{F} \) is conservative.

b) \(f_x = 3x^2 - 6y^2 \Rightarrow f = x^3 - 6y^2x + c(y) \Rightarrow f_y = -12xy + c'(y) = -12xy + 4y \). So \(c'(y) = 4y \), thus \(c(y) = 2y^2 \) (constant). In conclusion \(f = x^3 - 6xy^2 + 2y^2 \) (constant).

c) The curve \(C \) starts at \((1, 0) \) and ends at \((1, 1) \), therefore
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(1, 1) - f(1, 0) = (1 - 6 + 2) - 1 = -4. \]

4. a) The parametrization of the circle \(C \) is \(x = \cos t, \quad y = \sin t \), for \(0 \leq t < 2\pi \); then \(dx = -\sin t \, dt, \quad dy = \cos t \, dt \) and
\[W = \int_{0}^{2\pi} (5 \cos t + 3 \sin t)(-\sin t) + (1 + \cos(\sin t)) \cos t \, dt. \]

b) Let \(R \) be the unit disc inside \(C \);
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{R} \int_{R} (N_x - M_y) \, dA = \int_{R} (0 - 3) \, dA = -3 \text{ area}(R) = -3\pi. \]
\[(0, 4) \quad c_3 \quad (1, 4) \quad \begin{cases} \mathbf{F} \cdot d\mathbf{r} = \int \int_R (N_x - M_y) \, dx \, dy \\ (0, 0) \quad c_1 \quad (1, 0) \quad = \int \int_R (y + \cos x \cos y - \cos x \cos y) \, dx \, dy = \int \int_R y \, dx \, dy \end{cases} \]

5. a) \[C_4 \quad c_2 \quad c_1 \quad \int_0^4 \int_0^4 y \, dx \, dy = \int_0^4 y \, dy = \frac{[y^2/2]^4_0}{4} = 8. \]

b) On \(C_4 \), \(\mathbf{F} = \sin y \, \mathbf{i} \), whereas \(d\mathbf{r} \) is parallel to \(\mathbf{j} \). Hence \(\mathbf{F} \cdot d\mathbf{r} = 0 \). Therefore the work of \(\mathbf{F} \) along \(C_4 \) equals 0. Thus

\[
\begin{align*}
\int_{C_1 + C_2 + C_3} \mathbf{F} \cdot d\mathbf{r} &= \int_{C_4} \mathbf{F} \cdot d\mathbf{r} - \int_{C_4} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot d\mathbf{r}; \\
\text{and the total work along } C_1 + C_2 + C_3 \text{ is equal to the work along } C.
\end{align*}
\]

6. Let \(u = 2x - y \) and \(v = x + y - 1 \). The Jacobian \[
\begin{vmatrix}
\frac{u_x}{u_y} & \frac{u_y}{v_y}
\end{vmatrix} = \left| \begin{array}{cc}
2 & -1 \\
1 & 1
\end{array} \right| = 3.
\]

Hence \(du \, dv = 3 \, dx \, dy \) and \(dx \, dy = \frac{1}{3} \, du \, dv \), so that

\[
V = \int \int_{(2x-y)^2+(x+y-1)^2 < 4} 4 - (2x - y)^2 - (x + y - 1)^2 \, dx \, dy \\
= \int \int_{u^2 + v^2 < 4} (4 - u^2 - v^2) \frac{1}{3} \, du \, dv \\
= \int_0^{2\pi} \int_0^2 (4 - r^2) \frac{1}{3} r \, dr \, d\theta = \int_0^{2\pi} \frac{2}{3} \frac{r^2}{2} - \frac{1}{12} r^3 \bigg|_0^2 \\
= \int_0^{2\pi} \frac{4}{3} \, d\theta = \frac{8\pi}{3}.
\]