THIRD MIDTERM
MATH 18.022, MIT, AUTUMN 10

You have 50 minutes. This test is closed book, closed notes, no calculators.

Name: MODEL ANSWERS

Signature:

Recitation Time:

There are 5 problems, and the total number of points is 100. Show all your work. Please make your work as clear and easy to follow as possible.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 pts) For what values of λ does the function $f: \mathbb{R}^3 \rightarrow \mathbb{R}$,
\[f(x, y, z) = \lambda x^2 - \lambda xy + y^2 + \lambda z^2, \]
have a non-degenerate local minimum at $(0, 0, 0)$?

\[\nabla f = (2\lambda x - \lambda y, 2y - \lambda x, 2\lambda z) \]

\[H_f = \begin{pmatrix} 2\lambda & -\lambda & 0 \\ -\lambda & 2 & 0 \\ 0 & 0 & 2\lambda \end{pmatrix} \]

\[d_1 = 2\lambda, \quad d_2 = 4\lambda - \lambda^2, \quad d_3 = 2\lambda d_2 \]

Minimum: $d_1 > 0$, $d_2 > 0$, $d_3 > 0$

So, $\lambda > 0$, $4\lambda - \lambda^2 > 0$, $\lambda > 0$.

$\lambda(4-\lambda) > 0$

$\lambda < 4$

$0 < \lambda < 4$. $\lambda \in (0, 4)$.
2. (20pts) Let \(f: \mathbb{R}^3 \rightarrow \mathbb{R} \) be the function \(f(x, y, z) = x^2 - y^2 + z^2 \).

(i) Show that \(f \) has a global maximum on the ellipsoid \(2x^2 + 3y^2 + z^2 = 6 \).

\[K = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x^2 + 3y^2 + z^2 = 6 \} \] is closed and bounded. So \(K \) is compact.

\(f \) is \(\text{c} \), \(K \) is compact \(\Rightarrow \) \(f \) has a global maximum.

(ii) Find this maximum.

Consider \(h: \mathbb{R}^4 \rightarrow \mathbb{R} \) given by \(h(x, y, z, \lambda) = x^2 + y^2 + z^2 + \lambda(2x^2 + 3y^2 + z^2 - 6) \).

Critical pts of \(h \): \(2x = -4\lambda x \)
\(2y = 4\lambda y \)
\(2z = 2\lambda z \)
\(2x^2 + 3y^2 + z^2 = 6 \).

Either \(x = y = 0, \lambda = 1; y = z = 0, \lambda = -\frac{1}{2}; x = z = 0, \lambda = \lambda \frac{1}{2} \)

\(x = y = 0, z = \sqrt{6}; y = z = 0, x = \sqrt{3}; x = z, y = \sqrt{2} \)

Of these three pts, \((0, 0, \sqrt{6}) \) gives biggest pt.

Absolute maximum is \(6 \).
3. (20pts)

(i) Switch the order of integration in the integral
\[\int_0^3 \int_x^9 xe^{-y^2} \, dy \, dx. \]

(ii) Evaluate this integral.
\[\int_0^9 e^{-y^2} \left(\int_0^{\sqrt{x^2+y^2}} x \, dx \right) \, dy = \int_0^9 e^{-y^2} \left[\frac{x^2}{2} \right]_0^{\sqrt{x^2+y^2}} \, dy \]
\[= -\frac{1}{4} \int_0^9 2ye^{-y^2} \, dy \]
\[= -\frac{1}{4} \left[e^{-y^2} \right]_0^9 \]
\[= \frac{1}{4} \left(1 - e^{-81} \right). \]
4. (20pts) Let \(W \) be the region inside the sphere \(x^2 + y^2 + z^2 = 1 \) and inside the cone \(z^2 = x^2 + y^2 \).
Set up an integral to calculate the integral of the function \(yz \) over \(W \) and calculate this integral.

View \(W \) as a region of type I.

\[
\iiint_{W} yz \, dz \, dy \, dx = \int_{\frac{1}{\sqrt{2}}}^{1} \left(\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y \left(\int_{\frac{x+y^2}{2}}^{\frac{1-x^2+y^2-x^2-y^2}{2}} dy \right) dy \right) dx
\]

\[
= \int_{\frac{1}{\sqrt{2}}}^{1} \left(\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y \left(\frac{1-x^2-y^2-x^2-y^2}{2} \right) dy \right) dx
\]

\[
= \int_{\frac{1}{\sqrt{2}}}^{1} 0 \, dx = 0
\]

As \(y, y^3 \) are odd functions.

In retrospect, \(J(y) = \int_{\frac{1}{\sqrt{2}}}^{1} \frac{z}{\sqrt{x^2+y^2}} \, dz \) is an even function \(y \), so that \(yJ(y) \) is an odd function. Therefore integral is zero.
5. (20 pts) Let \(D \) be the region in the first quadrant bounded by the curves \(x^2 - y^2 = 1, x^2 - y^2 = 4, xy = 1 \) and \(xy = 3 \).

(i) Find \(du \, dv \) in terms of \(dx \, dy \), where \(u = x^2 - y^2 \) and \(v = xy \).

\[
\frac{\partial (uv)}{\partial (xy)} = \begin{vmatrix} 2x & -2y \\ y & x \end{vmatrix} = 2(x^2 + y^2) \quad \frac{\partial (x^2 + y^2)}{\partial (uv)} = \frac{1}{2(x^2 + y^2)} \\

du \, dv = 2(x^2 + y^2) \, dx \, dy
\]

(ii) Evaluate the integral

\[
\iint_D (x^4 - y^4) \, dx \, dy.
\]

\[
\int_1^3 \int_1^4 \frac{u}{2} \, du \, dv = \frac{1}{4} \int_1^3 \left[u^2 \right]^4_1 \, dv
\]

\[
= \frac{1}{4} \int_1^3 15 \, dv
\]

\[
= \frac{15}{2}
\]