1. 8.22: 14 (5 points)

2. 8.24: 12 (5 points)

3. Let \(f(x, y) = \int_0^y g(u)du \) where \(g : \mathbb{R} \rightarrow \mathbb{R} \) is a strictly positive continuous function.
 - Find \(\nabla f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) in terms of \(g \).
 - Consider a level set \(\{(x, y) \in \mathbb{R}^2 | f(x, y) = c\} \). Prove that for a fixed \(c \neq 0 \) there are exactly two level curves in the set. Moreover, prove they are precisely the graph of the function \(h(x) = b/x \) for exactly one \(b \in \mathbb{R} \). (Do not try to determine \(b \) in terms of \(g \)! Just prove it exists and is unique!)
 - Parameterize one curve on a level set and prove that \(\nabla f \) is orthogonal to the level set at each point on the curve.

 (6 points)

4. Let \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) by

 \[
 f(x, y) = \begin{cases}
 xy \frac{x^2-y^2}{x^2+y^2} & (x, y) \neq (0, 0) \\
 0 & (x, y) = (0, 0)
 \end{cases}
 \]

 - Prove \(\frac{\partial f}{\partial x}(0, y) = -y \) for any \(y \) and \(\frac{\partial f}{\partial y}(x, 0) = x \) for any \(x \).
 - Prove \(\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y} \).

 (6 points)

4. C20:5 (4 points)

5. C20:6 (4 points)