Solutions for PSet 9

1. (11.9:8) Using Fubini’s Theorem (we assumed that the double integral exists):

\[
\int \int_{[0,t] \times [1,t]} \frac{e^{tx}}{y^3} \, dx \, dy = \int_1^t \left(\int_0^t \frac{e^{tx}}{y^3} \, dx \right) \, dy = \int_1^t e^{tx} - \frac{1}{ty^2} \, dy = \left[\frac{t^2 e^y}{y^3} + \frac{1}{ty} \right]_{y=0}^{y=1} = \frac{1}{t^2} - \frac{1}{t} - \frac{1}{t^3} e^t + \frac{1}{t^3} e^{t^2}
\]

2. (11.15:2)

\[
\int \int_S (1 + x) \sin y \, dx \, dy = \int_0^1 \left(\int_0^{1+x} (1 + x) \sin y \, dy \right) \, dx = \left[\frac{x}{2} (x + 2) - (x + 1) \sin(x + 1) - \cos(x + 1) \right]_0^1 = \frac{3}{2} + \cos 1 + \sin 1 - \cos 2 - 2 \sin 2
\]

3. (11.15:6) The volume can be computed as the double integral of the function \(f(x, y) = \frac{6 - x - 2y}{3} \) over region \(S = \{(x, y) | 0 \leq x \leq 6, 0 \leq y \leq (6 - x)/2 \} \):

\[
\int \int_S \frac{6 - x - 2y}{3} \, dy \, dx = \int_0^6 \left(\int_0^{6-x/2} \frac{6-x-2y}{3} \, dy \right) \, dx = \left[\frac{(6-x)^2}{12} \right] \left[-\frac{(6-x)^3}{36} \right]_0^6 = 6
\]

4. (11.15:13) The domain we integrate over is given as

\[S = \{-6 \leq x \leq 2, \quad \frac{x^2 - 4}{4} \leq y \leq 2 - x \} \]
Observe the points of intersection of the two functions of \(x \) are at \((-6, 8)\) and \((2, 0)\). Integrating in \(x \) first will require dividing the domain into two regions, as on \(0 \leq y \leq 8, -\sqrt{4+4y} \leq x \leq 2-y \) while on \(-1 \leq y \leq 0 \) we see \(-\sqrt{4+4y} \leq x \leq \sqrt{4+4y} \).

Therefore we can evaluate our integral
\[
\int_{6}^{2} \int_{\frac{x^2}{4}}^{2-x} f(x, y) \, dy \, dx = \int_{-1}^{0} \int_{-\sqrt{4y+4}}^{\sqrt{4y+4}} f(x, y) \, dx \, dy + \int_{0}^{8} \int_{-\sqrt{4y+4}}^{2-y} f(x, y) \, dx \, dy
\]

5. (11.18:10) Place the coordinate system so that the sides of the rectangle become parallel to the axis and \(A = (0, 0) \), \(B = (0, b) \), \(C = (a, b) \) and \(D = (a, 0) \). The side \(AB \) then is along the \(y \) axis and the side \(AD \) is along the \(x \) axis. The rectangle can be described as \(Q = \{0 \leq x \leq a, 0 \leq y \leq b\} \). The distances of any point \((x, y)\) from segment \(AB \) and \(AD \) are \(x \) and \(y \) respectively. Thus, density \(f(x, y) \) and mass \(m(Q) \) can be defined as:
\[
f(x, y) = x \times y
\]
\[
m(Q) = \int \int_{Q} f(x, y) \, dy \, dx = \left(\frac{ab}{2}\right)^{2}
\]

Then the coordinates of the center of mass can be computed as:
\[
\bar{x} = \frac{1}{m(Q)} \int \int_{Q} x(xy) \, dy \, dx = \frac{2}{3}a
\]
\[
\bar{y} = \frac{1}{m(Q)} \int \int_{Q} y(xy) \, dy \, dx = \frac{2}{3}b
\]

6. Let \(f_S, f_R \) represent the density functions for \(S, R \) respectively. We define
\[
f_{R \cup S}(x) = \begin{cases} f_R(x) & \text{if } x \in R \\ f_S(x) & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}
\]

Then
\[
\overline{x_T} = \frac{\int \int_{R \cup S} x f_{R \cup S} \, dx \, dy}{\int \int_{R \cup S} f_{R \cup S} \, dx \, dy} = \frac{\int \int_{R} x f_R \, dx \, dy + \int \int_{S} x f_S \, dx \, dy}{\int \int_{R} f_R \, dx \, dy + \int \int_{S} f_S \, dx \, dy}.
\]
Now observe that \(\int_R x f_R \, dx \, dy = \bar{x}_R \int_R f_R \, dx \, dy = x_R m(R) \) and \(\int_S x f_S \, dx \, dy = \bar{x}_S \int_S f_S \, dx \, dy = x_S m(S) \). Thus

\[
\bar{x}_T = \frac{\bar{x}_R m(R) + \bar{x}_S m(S)}{m(R) + m(S)}.
\]

A similar argument works for \(\bar{y}_T \) and the result follows immediately.