18.02 Practice Exam 1

Problem 1. (15 points)
A unit cube lies in the first octant, with a vertex at the origin (see figure).

a) Express the vectors \vec{OQ} (a diagonal of the cube) and \vec{OR} (joining O to the center of a face) in terms of \hat{i}, \hat{j}, \hat{k}.

b) Find the cosine of the angle between OQ and OR.

Problem 2. (10 points)
The motion of a point P is given by the position vector $\vec{R} = 3 \cos t \hat{i} + 3 \sin t \hat{j} + t \hat{k}$. Compute the velocity and the speed of P.

Problem 3. (15 points: 10, 5)

a) Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$; then $\det(A) = 2$ and $A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & a & b \\ -1 & -2 & 5 \\ 2 & 2 & -6 \end{bmatrix}$; find a and b.

b) Solve the system $AX = B$, where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

c) In the matrix A, replace the entry 2 in the upper-right corner by c. Find a value of c for which the resulting matrix M is not invertible.

For this value of c the system $MX = 0$ has other solutions than the obvious one $X = 0$: find such a solution by using vector operations. (Hint: call U, V and W the three rows of M, and observe that $MX = 0$ if and only if X is orthogonal to the vectors U, V and W.)

Problem 4. (15 points)
The top extremity of a ladder of length L rests against a vertical wall, while the bottom is being pulled away. Find parametric equations for the midpoint P of the ladder, using as parameter the angle θ between the ladder and the horizontal ground.

Problem 5. (25 points: 10, 5, 10)
a) Find the area of the space triangle with vertices $P_0 : (2, 1, 0)$, $P_1 : (1, 0, 1)$, $P_2 : (2, -1, 1)$.

b) Find the equation of the plane containing the three points P_0, P_1, P_2.

c) Find the intersection of this plane with the line parallel to the vector $\vec{V} = \langle 1, 1, 1 \rangle$ and passing through the point $S : (-1, 0, 0)$.

Problem 6. (20 points: 5, 5, 10)
a) Let $\vec{R} = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$ be the position vector of a path. Give a simple intrinsic formula for $\frac{d}{dt}(\vec{R} \cdot \vec{R})$ in vector notation (not using coordinates).

b) Show that if \vec{R} has constant length, then \vec{R} and \vec{V} are perpendicular.

c) Let \vec{A} be the acceleration: still assuming that \vec{R} has constant length, and using vector differentiation, express the quantity $\vec{R} \cdot \vec{A}$ in terms of the velocity vector only.
18.02SC Multivariable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.