Problems: Lagrange Multipliers

1. Find the maximum and minimum values of \(f(x, y) = x^2 + x + 2y^2 \) on the unit circle.

\[\text{Answer:} \] The objective function is \(f(x, y) \). The constraint is \(g(x, y) = x^2 + y^2 = 1 \).

Lagrange equations:
\[
\begin{align*}
 f_x &= \lambda g_x \\
 f_y &= \lambda g_y \\
\end{align*}
\]

Constraint:
\[x^2 + y^2 = 1 \]

The second equation shows \(y = 0 \) or \(\lambda = 2 \).

\(\lambda = 2 \) \Rightarrow \(x = 1/2, y = \pm \sqrt{3}/2 \).

\(y = 0 \) \Rightarrow \(x = \pm 1 \).

Thus, the critical points are \((1/2, \sqrt{3}/2), (1/2, -\sqrt{3}/2), (1, 0)\), and \((-1, 0)\).

\(f(1/2, \pm \sqrt{3}/2) = 9/4 \) (maximum).

\(f(1, 0) = 2 \) (neither min. nor max).

\(f(-1, 0) = 0 \) (minimum).

2. Find the minimum and maximum values of \(f(x, y) = x^2 - xy + y^2 \) on the quarter circle \(x^2 + y^2 = 1, \ x, y \geq 0 \).

\[\text{Answer:} \] The constraint function here is \(g(x, y) = x^2 + y^2 = 1 \). The maximum and minimum values of \(f(x, y) \) will occur where \(\nabla f = \lambda \nabla g \) or at endpoints of the quarter circle.

\[\nabla f = (2x - y, -x + 2y) \quad \text{and} \quad \nabla g = (2x, 2y). \]

Setting \(\nabla f = \lambda \nabla g \), we get \(2x - y = \lambda \cdot 2x \) and \(-x + 2y = \lambda \cdot 2y \).

Solving for \(\lambda \) and setting the results equal to each other gives us:

\[
\begin{align*}
 \frac{2x - y}{2x} &= \frac{-x + 2y}{2y} \\
 \frac{2xy - y^2}{x^2} &= \frac{-x^2 + 2xy}{y^2} \\
\end{align*}
\]

Because we’re constrained to \(x^2 + y^2 = 1 \) with \(x \) and \(y \) non-negative, we conclude that \(x = y = \frac{1}{\sqrt{2}} \).

Thus, the extreme points of \(f(x, y) \) will be at \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (1, 0), \text{or} (0, 1)\).

\[f(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \frac{1}{2} \] is the minimum value of \(f \) on this quarter circle.

\[f(1, 0) = f(0, 1) = 1 \] are the maximal values of \(f \) on this quarter circle.