Proof of Lagrange Multipliers

Here we will give two arguments, one geometric and one analytic for why Lagrange multipliers work.

Critical points
For the function \(w = f(x, y, z) \) constrained by \(g(x, y, z) = c \) (\(c \) a constant) the critical points are defined as those points, which satisfy the constraint and where \(\nabla f \) is parallel to \(\nabla g \). In equations:

\[
\nabla f(x, y, z) = \lambda \nabla g(x, y, z) \quad \text{and} \quad g(x, y, z) = c.
\]

Statement of Lagrange multipliers
For the constrained system local maxima and minima (collectively extrema) occur at the critical points.

Geometric proof for Lagrange
(We only consider the two dimensional case, \(w = f(x, y) \) with constraint \(g(x, y) = c \).)
For concreteness, we’ve drawn the constraint curve, \(g(x, y) = c \), as a circle and some level curves for \(w = f(x, y) = c \) with explicit (made up) values. Geometrically, we are looking for the point on the circle where \(w \) takes its maximum or minimum values.

Now, start at the level curve with \(w = 17 \), which has no points on the circle. So, clearly, the maximum value of \(w \) on the constraint circle is less than 17. Move down the level curves until they first touch the circle when \(w = 14 \). Call the point where the first touch \(P \). It is clear that \(P \) gives a local maximum for \(w \) on \(g = c \), because if you move away from \(P \) in either direction on the circle you’ll be on a level curve with a smaller value.

Since the circle is a level curve for \(g \), we know \(\nabla g \) is perpendicular to it. We also know \(\nabla f \) is perpendicular to the level curve \(w = 14 \), since the curves themselves are tangent, these two gradients must be parallel.

Likewise, if you keep moving down the level curves, the last one to touch the circle will give a local minimum and the same argument will apply.
Analytic proof for Lagrange (in three dimensions)
Suppose \(f \) has a local maximum at \(P \) on the constraint surface.
Let \(\mathbf{r}(t) = (x(t), y(t), z(t)) \) be an arbitrary parametrized curve which lies on the constraint surface and has \((x(0), y(0), z(0)) = P \). Finally, let \(h(t) = f(x(t), y(t), z(t)) \). The setup guarantees that \(h(t) \) has a maximum at \(t = 0 \).

Taking a derivative using the chain rule in vector form gives
\[
h'(t) = \nabla f|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t).
\]
Since \(t = 0 \) is a local maximum, we have
\[
h'(0) = \nabla f|_P \cdot \mathbf{r}'(0) = 0.
\]
Thus, \(\nabla f|_P \) is perpendicular to any curve on the constraint surface through \(P \).
This implies \(\nabla f|_P \) is perpendicular to the surface. Since \(\nabla g|_P \) is also perpendicular to the surface we have proved \(\nabla f|_P \) is parallel to \(\nabla g|_P \). QED