Limits in Iterated Integrals

For most students, the trickiest part of evaluating multiple integrals by iteration is to
put in the limits of integration. Fortunately, a fairly uniform procedure is available which
works in any coordinate system. You must always begin by sketching the region; in what
follows we’ll assume you’ve done this.

1. Double integrals in rectangular coordinates.

Let’s illustrate this procedure on the first case that’s usually
taken up: double integrals in rectangular coordinates. Suppose we
want to evaluate over the region R pictured the integral

$$
\int \int_R f(x, y) \, dy \, dx,
$$

we are integrating first with respect to y. Then to put in the limits,

1. Hold x fixed, and let y increase (since we are integrating with respect to y).
 As the point (x, y) moves, it traces out a vertical line.

2. Integrate from the y-value where this vertical line enters the region R, to
 the y-value where it leaves R.

3. Then let x increase, integrating from the lowest x-value for which the vertical
 line intersects R, to the highest such x-value.

Carrying out this program for the region R pictured, the vertical line enters R where
$y = 1 - x$, and leaves where $y = \sqrt{1 - x^2}$.

The vertical lines which intersect R are those between $x = 0$ and
$x = 1$. Thus we get for the limits:

$$
\int \int_R f(x, y) \, dy \, dx = \int_0^1 \int_{\sqrt{1-x^2}}^{1-x} f(x, y) \, dy \, dx.
$$

To calculate the double integral, integrating in the reverse order $\int \int_R f(x, y) \, dx \, dy$,

1. Hold y fixed, let x increase (since we are integrating first with respect to x).
 This traces out a horizontal line.

2. Integrate from the x-value where the horizontal line enters R to the x-value
 where it leaves.

3. Choose the y-limits to include all of the horizontal lines which intersect R.

Following this prescription with our integral we get:

$$
\int \int_R f(x, y) \, dx \, dy = \int_0^1 \int_{1-y}^{\sqrt{1-y^2}} f(x, y) \, dx \, dy.
$$