Problems: Regions of Integration

1. Find the mass of the region \(R \) bounded by
\[
y = x + 1; \quad y = x^2; \quad x = 0 \text{ and } x = 1, \text{ if density } = \delta(x, y) = xy.
\]

Answer:

Inner limits: \(y \) from \(x \) to \(x + 1 \). Outer limits: \(x \) from 0 to 1.

\[
M = \int \int_R \delta(x, y) \, dA = \int_{x=0}^{1} \int_{y=x^2}^{x+1} xy \, dy \, dx
\]

Inner:
\[
\int_{x}^{x+1} xy \, dy = \left[\frac{y^2}{2} \right]_{x^2}^{x+1} = \frac{x(x + 1)^2}{2} - \frac{x^5}{2} = \frac{2}{2} + \frac{x^3}{2} + x - \frac{x^5}{2}.
\]

Outer:
\[
\int_{0}^{1} \int_{y=x^2}^{x+1} xy \, dy \, dx = \int_{0}^{1} \left[\frac{x^3}{3} + \frac{x^2}{2} - \frac{x^6}{12} \right]_0^1 = \frac{1}{8} + \frac{1}{4} + \frac{1}{12} = \frac{5}{8}.
\]

Note: The syntax \(y = x^2 \) in limits is redundant but useful. We know it must be \(y \) because of the \(dy \) matching the integral sign.

2. Find the volume of the tetrahedron shown below.

Answer: The surface has height: \(z = 1 - x - y \).

Limits: inner: \(0 < y < 1 - x \), outer: \(0 < x < 1 \). \(V = \int_{x=0}^{1} \int_{y=0}^{1-x} 1 - x - y \, dy \, dx. \)

Inner:
\[
\int_{y=0}^{1-x} 1 - x - y \, dy = y - xy - \frac{y^2}{2} \bigg|_{0}^{1-x} = 1 - x - x^2 - \frac{1}{2} x + \frac{x^2}{2}.
\]

Outer:
\[
\int_{0}^{1} \frac{1}{2} - x + \frac{x^2}{2} \, dx = \frac{1}{2} - \frac{1}{2} + \frac{1}{6} = \frac{1}{6}.
\]