Identifying Gradient Fields and Exact Differentials

1. Determine whether each of the vector fields below is conservative.
 a) $F = (xe^x + y, x)$
 b) $F = (xe^x + y, x + 2)$
 c) $F = (xe^x + y + x, x)$

 Answer: We know from lecture that if $F = Mi + Nj$ is continuously differentiable for all x and y, then $M_y = N_x$ for all x and y \implies F is conservative.

 Each of the fields in question is continuously differentiable for all x and y.
 a) $M = xe^x + y$, $N = x$. $M_y = 1$, $N_x = 1$. The field is conservative.
 b) $M = xe^x + y$, $N = x + 2$. $M_y = 1$, $N_x = 1$. The field is conservative.
 c) $M = xe^x + y + x$, $N = x$. $M_y = 1$, $N_x = 1$. The field is conservative.

 In fact, we can add any function of x to M and any function of y to N without affecting M_y and N_x.

2. Show $(xe^x + y) \, dx + x \, dy$ is exact.

 Answer: We know from lecture that $M \, dx + N \, dy$ is an exact differential if and only if $F = Mi + Nj$ is a gradient field. To show F is a gradient field, we must show that F is continuously differentiable and $M_y = N_x$ for all x, y.

 Indeed, F is continuously differentiable for all x, y by inspection. Here $M = xe^x + y$ and $N = x$, so $M_y = N_x = 1$. We conclude that $(xe^x + y) \, dx + x \, dy$ is exact.

3. Compute the two dimensional curl of F for each of the vector fields below.
 a) $F = (x, xe^x + y)$
 b) $F = i + j$
 c) $F = (xy^2, x^2y)$

 Answer: We know that if $F = Mi + Nj$ then $\text{curl}F = N_x - M_y$.

 a) $\text{curl}F = (e^x + xe^x) - 0 = e^x(1 + x)$.

 (This looks similar to the conservative vector fields from previous problems, but its components have been swapped.)

 b) $M = N = 1$ so $\text{curl}F = 0 - 0 = 0$.

 c) $N_x = 2xy$ and $M_y = 2yx$, so $\text{curl}F = 0$.

