Green’s Theorem

We start with the ingredients for Green’s theorem.
(i) \(C \) a simple closed curve (simple means it never intersects itself)
(ii) \(R \) the interior of \(C \).
We also require that \(C \) must be positively oriented, that is, it must be traversed so its interior is on the left as you move in around the curve. Finally we require that \(C \) be piecewise smooth. This means it is a smooth curve with, possibly a finite number of corners.

Here are some examples.

\[
\begin{align*}
\mathbf{F} &= \langle M, N \rangle \\
\oint_C M \, dx + N \, dy &= \iint_R N_x - M_y \, dA.
\end{align*}
\]

We call \(N_x - M_y \) the two dimensional curl and denote it \(\text{curl} \, \mathbf{F} \).

We can write also Green’s theorem as
\[
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R \text{curl} \, \mathbf{F} \, dA.
\]

Example 1: (use the right hand side (RHS) to find the left hand side (LHS))
Use Green’s Theorem to compute
\[
I = \oint_C 3x^2y^2 \, dx + 2x^2(1 + xy) \, dy \quad \text{where } C \text{ is the circle shown.}
\]

By Green’s Theorem \(I = \iint_R 6x^2y + 4x - 6x^2y \, dA = 4 \iint_R x \, dA \).

We could compute this directly, but we know \(x_{cm} = \frac{1}{A} \iint_R x \, dA = a \)
\[
\Rightarrow \iint_R x \, dA = \pi a^3 \Rightarrow I = 4\pi a^3.
\]

Example 2: (Use the LHS to find the RHS.)
Use Green’s Theorem to find the area under one arch of the cycloid
\[
x = a(\theta - \sin \theta), \quad y = a(1 - \cos \theta).
\]
The picture shows the curve $C = C_1 - C_2$ surrounding the area we want to find. (Note the minus sign on C_2.) By Green’s Theorem,
\[\oint_C -y \, dx = \iint_R dA = \text{area}. \]
Thus,
\[
\text{area} = \oint_{C_1 - C_2} -y \, dx = \int_{C_1} 0 \cdot dx - \int_{C_2} -y \, dx = \int_0^{2\pi} a^2 (1 - \cos \theta)^2 \, d\theta = 3\pi a^2.
\]