Finding Area Using Line Integrals

Use a line integral (and Green’s Theorem) to find the area of the unit circle.

Answer: Recall that Green’s Theorem tells us \(\oint_C M \, dx + N \, dy = \iint_R N_x - M_y \, dA \). To find the area of the unit circle we let \(M = 0 \) and \(N = x \) to get \(\iint_R 1 \, dA = \oint_C x \, dy \).

We parametrize the circle by \(x = \cos \theta, \ y = \sin \theta, \ 0 < \theta \leq 2\pi \), so \(x \, dy = \cos^2 \theta \, d\theta \). Then

\[
\text{Area} = \int \int_R 1 \, dA = \oint_C x \, dy = \int_0^{2\pi} \cos^2 \theta \, d\theta = \int_0^{2\pi} \frac{1 + \cos 2\theta}{2} \, d\theta = \left[\frac{1}{2} \left(\theta + \frac{1}{2} \sin 2\theta \right) \right]_0^{2\pi} = \pi.
\]
18.02SC Multivariable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.