Problems: Flux Through a Paraboloid

Consider the paraboloid \(z = x^2 + y^2 \). Let \(S \) be the portion of this surface that lies below the plane \(z = 1 \). Let \(\mathbf{F} = x\mathbf{i} + y\mathbf{j} + (1 - 2z)\mathbf{k} \).

Calculate the flux of \(\mathbf{F} \) across \(S \) using the outward normal (the normal pointing away from the \(z \)-axis).

Answer: First, draw a picture:

![Diagram of a paraboloid](image)

The surface \(S \) is a bowl centered on the \(z \)-axis. The outward normal \(\mathbf{n} \) points away from the outside of the bowl and downward. The region \(R \) is the shadow of the bowl – the unit circle in the \(xy \)-plane.

We know the \(z \) component of \(\mathbf{n} \) is negative, so \(\mathbf{n} \, dS = \langle z_x, z_y, -1 \rangle \, dx \, dy = \langle 2x, 2y, -1 \rangle \, dx \, dy \).

Thus, \(\mathbf{F} \cdot \mathbf{n} \, dS = (2x^2 + 2y^2 + 2z - 1) \, dx \, dy = (4z - 1) \, dx \, dy = (4r^2 - 1) \, dx \, dy \).

\[
\begin{align*}
\iint_S \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_R (4r^2 - 1) \, dx \, dy \\
&= \int_0^{2\pi} \int_0^1 (4r^2 - 1) r \, dr \, d\theta \\
&= \int_0^{2\pi} \left. \frac{1}{2} r^2 \right|_0^1 \, d\theta \\
&= \frac{\pi}{2} \\
&= \frac{\pi}{2}.
\end{align*}
\]
18.02SC Multivariable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.