Problems: Divergence Theorem

Let S_1 be the part of the paraboloid $z = 1 - x^2 - y^2$ which is above the xy-plane and S_2 be the unit disk in the xy-plane. Use the divergence theorem to find the flux of F upward through S_1, where $F = (yz, xz, xy)$.

Answer: Write $F = Mi + Nj +Pk$, where $M = yz$, $N = xz$, and $P = xy$. Then

$$\text{div}F = M_x + N_y + P_z = 0.$$

The divergence theorem says: flux $= \iiint_{S_1+S_2} F \cdot \mathbf{n} \, dS = \iiint_D \text{div}F \, dV = \iiint_D 0 \, dV = 0$

$\Rightarrow \iiint_{S_1} F \cdot \mathbf{n} \, dS + \iiint_{S_2} F \cdot \mathbf{n} \, dS = 0 \Rightarrow \iiint_{S_1} F \cdot \mathbf{n} \, dS = -\iiint_{S_2} F \cdot \mathbf{n} \, dS.$

Therefore to find what we want we only need to compute the flux through S_2.

But S_2 is in the xy-plane, so $dS = dx \, dy$, $\mathbf{n} = -\mathbf{k}$ $\Rightarrow F \cdot \mathbf{n} \, dS = -xy \, dx \, dy$ on S_2.

Since S_2 is the unit disk, symmetry gives

$$\iiint_{S_2} -xy \, dx \, dy = 0 \Rightarrow \iiint_{S_1} F \cdot \mathbf{n} \, dS = -\iiint_{S_2} F \cdot \mathbf{n} \, dS = 0.$$
18.02SC Multivariable Calculus
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.