18.034 Honors Differential Equations
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
1. Suppose A is an $n \times n$ matrix and $y_1(t), y_2(t), \ldots y_n(t)$ are solutions to $y' = Ay$. Show that the set if $\{y_i(t_0)\}_{i=1}^n$ is linearly independent at some time t_0, then to any other solution $y(t)$ there correspond constants c_i so that $y(t) = c_1y_1(t) + c_2y_2(t) + \ldots + c_ny_n(t)$ (i.e., the set $\{y_i(t)\}_{i=1}^n$ constitutes a basis of solutions).

2. Let A be an $n \times n$ matrix.

 (a) Suppose v_1 and v_2 are eigenvectors of A corresponding to the eigenvalues λ_1 and λ_2, respectively. If $\lambda_1 \neq \lambda_2$, show that v_1 and v_2 are linearly independent.

 (b) Assume now that $n = 2$. If $p_A(\lambda) = (\lambda - \lambda_1)^2$, show that either $A = \lambda_1 I$, or there is a unique eigenvector v_1 associated to λ_1 and a vector v_2 satisfying $(A - \lambda_1)v_2 = v_1$.

 (c) For A as in the latter alternative in (2), show that the general solution to
 \[
 \frac{d}{dt}y = Ay
 \]
 is given by $y = e^{\lambda_1 t}(c_1 t + c_2)v_1 + c_1 e^{\lambda_1 t}v_2$.

3. For the system
 \[
 y'_1 = 3y_1 + 2y_2, \quad y'_2 = -2y_1 - y_2,
 \]
 find the unique fundamental matrix $U(t)$ satisfying $U(0) = I$.

4. Under what conditions on the trace and determinant of the 2×2 matrix A will all solutions to the equation $y' = Ay$ satisfy $\lim_{t \to \infty} |y(t)| = 0$?